简介:在分析神经网络和灰色关联度诊断方法的基础上,研究并提出了改进的BP神经网络和ABO灰色关联度诊断法.应用小波分析法对齿轮箱振动信号进行小波消噪,提取了信号的时频域特征参数.讨论了特征参数的无量纲化处理方法,并结合ABO灰色关联度诊断法简单易于实现和BP神经网络法诊断精度较高的特点,完成了齿轮箱的故障模式识别和诊断决策.
简介:针对火炮身管烧蚀磨损量受多种因素影响,变化趋势复杂,难以通过建立准确的数学模型进行预测的问题,在采用灰色动态模型对身管烧蚀磨损量进行预测的基础上,构造了组合灰色神经网络预测模型进行预测.结果表明,通过组合灰色神经网络模型可以得出较单一模型预测更加准确的预测值,能更好地反映内膛烧蚀磨损量的发展规律.
简介:对于结构复杂的自行火炮变速箱,其故障模式具有不可预知性.针对传统的神经网络识别方法明显存在不足这一问题,提出一种基于自适应谐振理论(AdaptiveResonanceTheory)的自行火炮变速箱瞬态过程故障诊断新方法.该方法不仅可以对已知的故障模式进行分类,而且对自行火炮变速箱未知故障模式具有很强的自适应分辨能力.实例证明,ART-2神经网络与传统的神经网络方法相结合为自行火炮变速箱故障诊断提出了新思路.
改进的神经网络和灰色理论在故障诊断中的应用
基于组合灰色神经网络模型的火炮身管烧蚀磨损量预测
基于ART-2网络的自行火炮变速箱状态自适应分类