学科分类
/ 2
32 个结果
  • 简介:为揭示弹箭在高空飞行过程中由于重力持续作用产生大攻角的物理本质,建立了弹道平面内时变参数的弹体运动数学模型,并推导了弹体在高空飞行段的攻角响应方程.同时,为了分析弹道顶点附近锥形运动的稳定性,综合考虑弹体姿态运动和位移运动建立了旋转弹锥形运动的动力学模型.针对大攻角引起显著气动非线性效应的情况,采用李雅普诺夫一级近似方法,给出了弹道顶点附近弹体锥形运动的稳定判据,并通过数值仿真验证了其正确性.

  • 标签: 旋转弹 锥形运动 复攻角 气动非线性 李雅普诺夫方法
  • 简介:强非线性系统经引入参数变换,并在一定的假设条件下,可转化为弱非线性系统.将其解展成为改进的傅立叶级数后,利用参数待定法可方便地求出强非线性系统的共振周期解.研究了Duffing方程的主共振、VanderPol方程的3次超谐共振和VanderPol-Mathieu方程的1/2亚谐共振周期解.这些例子表明近似解与数值解非常吻合。

  • 标签: 非线性系统 共振 参数变换 傅立叶级数 渐近法
  • 简介:以单壁纳米碳为例,建立了其分子动力学模型,并对(5,5)和(10,10)扶手椅型纳米碳与刚性壁的正碰撞过程和简谐纵波传播过程进行了模拟.在此基础上,探讨如何用弹性杆模型来研究纳米碳的动力学问题.研究表明,弹性杆模型可以描述单壁扶手椅型纳米碳与刚性壁高速碰撞的动力学行为;对于纵波传播中的色散描述,则需在弹性杆模型中计入纳米碳微结构引起的非局部弹性效应.

  • 标签: 纳米碳管 冲击 色散 分子动力学模拟
  • 简介:运用Galerkin方法讨论了一具有记忆项的耦合非线性抽象方程组的初值问题,根据方程组的特点,巧妙地对两个方程进行相加,并结合微积分的性质得到了所要的结果,然后研究收敛性,最后证明了方程组整体弱解的存在性.

  • 标签: 记忆项 耦合 非线性 抽象方程组 整体解
  • 简介:应用动力系统分岔理论和定性理论研究了一非线性Degasperis-Procesi方程的行波解及其动力学性质,并结合可积系统的特点,利用哈密尔顿系统的能量特征,通过Maple软件绘出其相轨图,再根据行波与相轨道间的对应关系,揭示了不同类型的行波解间的转变与参数变化的关系,并且给出了不同行波间相互转换的参数分岔值,从根本上解释了Peakon产生的原因,数值模拟验证了该方法的正确性,最后给出了相应行波解的表达式。

  • 标签: 孤立波 周期波 尖波 Degasperis-Proeesi方程 动力系统分岔理论
  • 简介:基于Poincaré映射方法对一两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.

  • 标签: 碰撞系统 亚谐运动 POINCARÉ映射 稳定性
  • 简介:对含有非线性时滞位移的vanderPol-Duffing方程进行了研究,着重研究了时滞参数对vanderPolDuffing系统Hopf分叉及极限环幅值的控制.首先采用摄动法从理论上推导出极限环幅值与时滞参数之间的关系,分析时滞参数对幅值大小的影响,并着重讨论了不改变振动频率情况下对幅值的控制.通过对零解的稳定性分析,得出Hopf分叉产生的条件.最后用数值计算的方法验证了理论计算结果,数值计算结果与理论结果相当吻合.

  • 标签: 摄动法 分叉控制 时滞动力系统
  • 简介:将广义微分求积法(GDQR)用于分析输流曲的流致振动问题,这是一个新的尝试.基于输流曲的面内振动微分方程,利用GDQR法使曲系统在空间域上得以离散化,从而获得了输流曲的动力学方程组.数值算例中,计算得到了输流曲在几种典型边界条件下的固有频率以及曲发生失稳的临界流速等,这些计算结果与前人的解析解结果吻合较好.此外,还给出了两端固定输流曲典型的动力响应行为.研究表明,GDQR法极易处理输流曲这一动力学模型,精度令人满意,进一步的研究可望推广到输流管道的非线性振动分析中.

  • 标签: QR法 流致振动 GD 广义微分求积法 振动微分方程 动力学方程组
  • 简介:利用试探函数法,将一个难于求解的非线性偏微分方程化为一个易于求解的代数方程,然后用待定系数法确定相应的常数,简洁地求得了一非线性偏微分方程的精确解.将此方法应用到Burgers方程、KdV方程和KdV-Burgers方程,所得结果与已有结果完全吻合.本方法可望进一步推广用于求解其它非线性偏微分方程.

  • 标签: 非线性偏微分方程 试探函数法 精确解 BURGERS方程 待定系数法 KDV方程
  • 简介:研究了一参数激励和外激励联合作用下四边简支薄板在1:1内共振下的周期解分叉.首先,根据vonKarman方程推导出四边简支薄板的运动控制方程,利用Galerkin方法得到参数激励和外激励联合作用下的两个自由度的运动方程.然后,通过引入周期变换和相应的Poincar6映射推广了次谐Melnikov方法.最后,对系统进行数值模拟验证了理论的正确性.

  • 标签: 周期解 次谐Melnikov函数 周期变换 薄板
  • 简介:考虑环境阻尼因素的影响,研究了具有运动约束作用Kelvin-Voigt型输流曲的混沌运动现象.数值仿真表明,输流曲系统在某些参数取值时具有混沌运动的可能,管道材料的粘弹性系数和环境阻尼等因素对曲的动力响应产生较大的影响.这些结论可为工程管道系统的铺设与设计提供参考.

  • 标签: 混沌运动 阻尼作用 环境 t型 数值仿真 约束作用
  • 简介:研究了一具有时滞及非线性特性发生率的SIRS传染病模型,首先利用特征值理论分析了无病平衡点和地方病平衡点的局部稳定性;并以时滞τ作为分岔参数,分析了模型的Hopf分岔行为,运用中心流形定理和规范型理论给出了分岔方向及分岔周期解稳定性的计算公式;最后,数值模拟验证了理论分析结果.

  • 标签: 稳定性 时滞 非线性发生率 阶段结构 HOPF分岔