简介:为了进一步优化神经网络算法,提高网络神经算法的速率并提高其稳定性,就现有BP算法所存在的收敛速度慢以及容易陷入局部极小值的弊病,我们将进一步通过一般改进算法解决在神经网络结构优化过程中依然无法解决的问题。依据遗传算法的特征,进一步在经过改进的压缩映射遗传的基础上提出了BP神经网络优化方案。泛函分析中压缩映射原理的应用,一方面解决了困扰人们的BP神经网络算法所固有的缺点,显著地提高了神经网络算法的收敛速度,而且解决了BP神经在运行的过程中和网络连接权值初值的取值紧密相连的缺点。经过大量的计算我们得到如下数据:经过优化改进后,训练时间节约了8.3%,训练步数降低了近17.4%。经过大量的研究实验表明:经过改进后的BP神经网络算法取得了良好的效果,十分具有应用价值。
简介:数据流的概念会随着时间的变化而变化,例如天气预报和网络监控。这种随时改变概念的现象叫做概念漂移。如果不处理好概念漂移不仅降低聚类的质量,并且还会导致错误的聚类结果。现有的概念漂移算法大多都依据分类算法,根据分类算法中的错误率来判断概念漂移。然而,在随时变化的数据流中很难发现类标签。在聚类检测概念漂移中,很多聚类算法都是再概念漂移检测之前,所以当发生概念漂移的时候还要重新聚类。我们提出了一种基于密度网格的数据流聚类和概念漂移检测算法,这个框架采用了一种策略动态地改变滑动窗口。由于用到了密度网格技术,它提升了DCDA检测算法的效率,并且利用可变滑动窗口替换了固定滑动窗口以适应数据流的变化。实验结果证明我们的框架在准确率和时间效率上好于DCDA。
简介:随着Internet、移动网络和高性能网络的不断发展,在网络和不确定参数下具有多约未的QoS多播路由优化技术已成为网络及分布式系统领域的一个重要的研究课题,这也是下一代Internet和高性能网络的难题。本文探讨了具有QoS多播路由问题,逦描述了一种适应于研究QoS多播路由的网络模型。本文在网络环境及不确定参数下,提出了一种在网络规模和可行性方面为Internet、移动网络和其他高性能网络基于Tabu搜索的QoS多播路由优化算法(TQMRA)。TQMRA在网络环境及不确定参数下能够优化网络资源。仿真实验结果表明,TQMRA为QoS多播路由提供了一种新的有效途径。