简介:研究了多元线性模型中条件最优线性无偏预测的稳健性问题,得到了条件线性可预测变量的这种预测关于协方差矩阵具有稳健性的充要条件.
简介:针对GM(1,1)模型在矿井瓦斯涌出量预测的不足,在灰色预测模型基础上引入了拓扑预测,将两者的优点结合起来,建立了矿井瓦斯涌出量预测的灰色拓扑预测模型.继而将该模型应用到采区工作面的瓦斯涌出量预测的分析中.实验结果表明:原始数据的GM(1,1)模型结果与测量值相差很大,且不满足精度要求,而采用灰色拓扑预测模型要求精度达到"很好"级别,预测结果和实测结果波形变化一致,绝对误差为0.2m~3/min,相对误差为3.8%,误差小.实验验证了灰色拓扑模型能够解决传统的GM(1,1)模型对于波动类型数据预测的不足.对于矿井瓦斯管理具有指导意义.
简介:针对具有层次或聚类数据的多水平模型能准确地反映变量间基于层次框架下的关系,并给出不同层次数据的差异性估计及跨级相关估计,为具有层次结构数据的统计建模提供了重要的研究工具,在社会学、心理学、生物医学及经济学领域具有广泛的应用价值。本文简要介绍常用的多水平线性模型和多水平Logistic模型的构建过程,重点介绍其在经济领域中的应用。同时对多水平模型的估计理论、应用软件以及发展展望进行了讨论。
简介:在连续Gompertz模型基础上,导出了差分形式的Gompertz模型。通过对肿瘤生长数据的模拟,验证了差分形式的Gompertz模型对连续Gompertz模型具有良好的逼近效果;进一步,对其稳定性进行了研究,讨论了模型参数对平衡点稳定性的影响;最后,研究了一类基于差分形式的Gompertz模型的非线性动力系统的长期行为,数值模拟表明差分形式的Gompertz模型的长期行为对模型参数较为敏感。