简介:Basedontheextendedmappingdeformationmethodandsymboliccomputation,manyexacttravellingwavesolutionsarefoundforthe(3+1)-dimensionalJMequationandthe(3+1)-dimensionalKPequation.Theobtainedsolutionsincludesolitarysolution,periodicwavesolution,rationaltravellingwavesolution,andJacobianandWeierstrassfunctionsolution,etc.
简介:题目:少量管冻结稳态温度场数学模型目的:少量任意布置冻结管冻结的稳态温度场无解析解。建立任意布置少量管冻结稳态温度场模型,获得解析解,解决人工冻结温度场理论问题。创新点:1.基于势函数叠加原理,确立人工地层冻结中少量管冻结稳态温度场的通用求解方法;2.建立任意布置的3根和4根非等温冻结管下冻结稳态温度场数学模型,获得其解析解通解及特解。方法:1.通过理论分析,将冻结管简化为热汇点源,确定人工地层冻结热势的拉普拉斯方程表述;2.应用势函数叠加原理建立少量管冻结稳态温度场的通用求解方法;3.建立少量管冻结稳态温度场的数学模型,通过理论推导获得温度场解析解;4.通过数值模拟,验证所提方法、数学模型和解析解的正确性和准确性。结论:1.将冻结管简化为点源(热汇),其冻结形成的热势场服从拉普拉斯方程,其解即为热势函数;2.多根冻结管冻结时,将单根冻结管的热势函数叠加,由冻结管的位置决定每根冻结管的热流,再根据边界条件定解。这一方法(即势函数叠加法)可以用于任意布置冻结管冻结稳态温度场解析解的求解:3.将冻结管简化为点源导致获得的解析解存在一定的误差,但误差仅发生在冻结管附近极小的范围内,并且误差微小,完全满足工程上的精度要求。
简介:Spatiallyexplicitmodelshavebecomewidelyusedintoday'smathematicalecologyandepidemiologytostudythepersistenceofpopulations.Forsimplicity,populationdynamicsisoftenanalysedbyusingordinarydifferentialequations(ODEs)orpartialdifferentialequations(PDEs)intheone-dimensional(1D)space.Animportantquestionistopredictspeciesextinctionorpersistenceratebymeanofcomputersimulationbasedonthespatialmodel.Recently,ithasbeenreportedthatstableturbulentandregularwavesarepersistentbasedonthespatialsusceptible-infected-resistant-susceptible(SIRS)modelbyusingthecellularautomata(CA)methodinthetwo-dimensional(2D)space[Proc.Natl.Acad.Sci.USA101,18246(2004)].Inthispaper,weaddressotherimportantissuesrelevanttophasetransitionsofepidemicpersistence.Weareinterestedinassessingthesignificanceoftheriskofextinctionin1Dspace.Ourresultsshowthatthe2Dspacecanconsiderablyincreasethepossibilityofpersistenceofspreadofepidemicswhenthedegreedistributionoftheindividualsisuniform,i.e.thepatternof2Dspatialpersistencecorrespondingtoextinctionina1Dsystemwiththesameparameters.Thetrade-offsofextinctionandpersistencebetweentheinfectionperiodandinfectionrateareobservedinthe1Dcase.Moreover,nearthetrade-off(phasetransition)line,anindependentestimationofthedynamicexponentcanbeperformed,anditisinexcellentagreementwiththeresultobtainedbyusingtheconjecturedrelationshipofdirectedpercolation.Wefindthattheintroductionofashort-rangediffusionandalong-rangediffusionamongtheneighbourhoodscanenhancethepersistenceandglobaldiseasespreadinthespace.
简介:
简介:InordertodevelopthepracticalapproximationmodelssuitabletoflowfieldsatlowMachnumberwithlargetemperaturedifference,theinfluenceofdifferenceinapproximationmodelsonnumericalsolutionswasinvestigatedbysolvingthenaturalconvectioninthe3-Denclosureswithverticalsidewallsdifferentiallyheatedandtheheatedbottomwallusing3approximationmodels,thatisBoussinesqapproximation,lowMachNumberapproximationandapproximationmodelproposedbyMlaouah.Asresultsofthesimulation,theeffectsofthedifferencesinthethreeapproximationmodelsonthenumericalsolutionsbecomeclear.
简介:Acombinedphysicalmodelofbubbelgrowthispropsedalongwithacorrespondingbubblegrowthmodelforbinarymixturesonsmoothtubes.UsingthegeneralmodelofWangetal.^[1].andthebubblegrowthmodelforbinarymixtures,ananalyticalmodelfornucleatepoolboilingheattransferofbinarymixturesonsmoothtubesisdeveloped.Inaddition,nucleatepoolboilingheattransferofpureliquidsandbinarymixtruesonahorizontalsmoothtubewasstudiedexperimentally.Thepureliquidsandbinarymixturesincludedwatermethanol,ehanol,andtheirbinarymixtures.Theanalyticalmodelsforbothpureliquidsandbinarymixturesareingoodagreementwiththeexperimentaldata.