学科分类
/ 25
500 个结果
  • 简介:在三维空间R~3中讨论非线性波动方程外区域初边值问题.当外区域 和初值ф、Ф及非线性项F满足一定条件时,利用线性化问题的衰减估计和Nash-Moser技巧,得到了整体解存在定理.

  • 标签: 非线性初边值 线性化 外区域 衰减
  • 简介:本文用动力系统方平面分支方法,研究一个广义Vakhnenko方程的圈波.在p=3的参数条件下,获得了精确的周期圈波和圈孤子解的表达式,作出了周期圈波和圈孤子的平面图形,直观的显示了这两种解的动力学性质.本文的结果丰富了广义Vakhnenko方程的研究.

  • 标签: 广义Vakhnenko方程 行波解 周期圈波解 圈孤子解
  • 简介:本文在空间X_K~(r,q)中研究三维带有科氏力的不可压缩流体Navier-Stokes方程(αu)/(αt)-Δu+ωe_3×u+(u·▽)u+▽q=f(x,t)∈R~3×Rdivu=0(x,t)∈R~3×R证明对于小的殆周期外力f∈BUC(R;B_(p,2)~(-s)(R~3))∩BUC(R;L~l(R~3)),该系统存在唯一的殆周期mild解.

  • 标签: NAVIER-STOKES方程 科氏力 殆周期解 MILD解
  • 简介:应用整体反函数理论证明了广义Lienard方程a(t)x"+f(x,x′)x′+g(t,x)=e(t),x(0)-x(2π)=x′(0)-x′(2π)=0,周期解的存在唯一性,并由此得到它在几种特殊情况下周期解的存在唯一性定理.

  • 标签: 广义LIENARD方程 周期解 存在唯一性
  • 简介:利用临界点理论和变分方法,研究了一类带有脉冲效应的二阶周期边值问题,在较弱的条件下,得到了非平凡解的存在性.所得结论推广和改进了近期这方面的一些结果.

  • 标签: 周期边值 脉冲 变分方法 临界点理论 非平凡解
  • 简介:本文证明了方程组(In+AB)x=0和(In+BA)x=0解的个数是一致的。

  • 标签: 线性方程组 矩阵
  • 简介:研究一类非线性双曲方程utt-M∫Ω|u|2dx△u=|u|αu的初边值问题局部解的存在性和唯一性.利用Galerkin方法和改进的势井理论得到:当M(r)和α满足一定条件,且初值充分小时,方程存在局部解.

  • 标签: GALERKIN方法 SOBOLEV嵌入定理 局部解存在性 唯一性
  • 简介:考虑具常数特征拟线性双曲型方程,提出一个新的可化约方程组的方法,证明了具常特征方程组Cauchy问题经典解的整体存在性定理.同时构造一些例子说明一些有趣的现象.

  • 标签: 常数特征 拟线性双曲型方程组 经典解 奇性
  • 简介:讨论了非线性薛定谔方程在海森堡绘景和薛定谔绘景中的变换、系统哈密顿量的物理意义,以解析解及数值解的方式计算了多体系统的能量随时演化关系,证明了非线性薛定谔方程虽然具有薛定谔绘景的形式,但实质是海森堡绘景中的动力学方程

  • 标签: 非线性薛定谔方程 海森堡绘景 薛定谔绘景
  • 简介:本文对任意线性方程组AX=B(A∈R(n×m),B∈Rn),在文[1]基础上给出了一种迭代算法。其收敛速度比文[1]方法快,并证明了该算法的收敛性。最后,通过几个算例说明了本文算法的有效性。

  • 标签: 解线性方程组 迭代解法 迭代格式 迭代算法 正定阵 对称阵