学科分类
/ 25
500 个结果
  • 简介:一类非线性方程周期响应雷纪刚(北京机械工业学院)1、引言本世纪三十年代,著名学者Krylov和bogolitlbov指出:K+D’X一。F(X,X,t,。)(。1。当F是各变量的解析函数时,其解是存在的。在此之后人们对方程(1.l)的研究一直就未停...

  • 标签: 非线性方程 周期解 非线性动力学 实变函数论 微分方程的通解 解析函数
  • 简介:给出了具有时滞和时超的一阶非线性脉冲微分方程所有解为振动的充分条件,所得结论包含了线性情形作为其推论.

  • 标签: 脉冲 具偏差变元微分方程 振动性
  • 简介:研究抽象Banach空间中线性微微分方程的可解性,利用算子双半群方法,讨论了在确定时间跳跃或脉冲线性微分方程解的存在性,表明在一定条件下间断或脉冲方程的解存在唯一.

  • 标签: 线性算子 双半群 间断微分方程 脉冲微分方程 可解性
  • 简介:运用锥上的不动点定理,研究一类脉冲时滞微分方程的概周期解,得到了保证系统存在概周期解的一组充分条件。

  • 标签: 时滞脉冲方程 概周期解 存在性
  • 简介:在非线性项f是关于u的奇函数,势函数是有界的周期函数且下界是正的,Sobolev嵌入缺乏了紧性和f不再满足(AR)条件下,运用临界点理论中的喷泉定理和集中紧性原则证明了R~N中具有周期势函数的一类超线性p-Laplacian方程存在无穷多非平凡解。

  • 标签: 集中紧性原理 (C)条件 喷泉定理
  • 简介:主要利用Leray-Schauder不动点理论研究Lienard方程周期边值问题{(x)+f(x)(x)+g(t,x)=e(t)x(0)=x(T),(x)(0)=(x)(T)的正解及多个正解的存在性.

  • 标签: Lienard微分方程 边值问题 不动点 正解
  • 简介:本文研究等离子体中的高功率超短激光通道问题中出现的一类非线性Schrodinger方程,利用变分原理,把一类非线性Schrodinger方程转换为变分问题,再利用喷泉定理及对偶喷泉定理证明一类非线性Schrodinger方程存在驻波解.

  • 标签: 非线性SCHRODINGER方程 喷泉定理 对偶喷泉定理 (PS)c条件
  • 简介:在Banach空间中利用上下解方法与不连续增算子不动点定理,研究了含间断项和右端函数具有一阶导数项的二阶非线性常微分方程周期边值问题的最大解、最小解的存在性,推广和改进了现有的结果.而且对于有限维空间,我们获得的这些结果也都是新的.

  • 标签: BANACH空间 周期边值问题 上下解 增算子不动点定理
  • 简介:讨论了Banach空间X中带有非局部条件的半线性发展方程.在g失去紧性的条件下,利用L^p(I;X)空间中的不动点定理,对边值问题适度解的存在性做了研究,完善和推广了已有结论.最后给出一个在偏微分方程中的例子.

  • 标签: 非局部条件 紧半群 适度解 Schaefer不动点定理
  • 简介:本文将常系数线性微分方程的特征根理论推广到变系数线性微分方程上去,从而建立了线性微分方程系统一的特征根理论。常系数线性微分方程的特征根理论实质是矩阵的特征根理论,因此,我们建立的理论也可以看成将矩阵的特征根理论平移到线性微分方程系上去。矩阵的特征根分简单特征根(初等因子次数为1)与复杂特征根(初等因子次数大于1)两类。本文先推广前者并称之为“方程的特征根”;然后推广后者,并称之为“方程的特征阵”。

  • 标签: 线性微分方程 特征根 特征方程 变系数 初等因子 线性系
  • 简介:讨论了线性方程组正解的若干性质,给出了线性方程组有正解的一个充要条件,以及由此得到的求正解的一般方法,还介绍了正解问题的若干应用.

  • 标签: 减列方程组 极小方程组 线性方程组的正解
  • 简介:对于两端固定的一维非线性方程的初边值问题,用多重尺度法求得近似解的首项,并用能量方法结合非线性Gronwall不等式得出了近似解首项的误差的一致性估计.

  • 标签: 梁方程 初边值问题 多重尺度法 近似解