简介:古人云“以史为鉴”,说的是吸取历史的经验教训,对未来的情况做出预判或者改变。生活中,亦是存在相似的利用历史数据对未来变化趋势进行预测分析的时间序列问题。本文就时间序列一类的问题进行研究,探讨如何更好地根据历史统计数据,对未来的变化趋势进行预测分析。本文基于神经网络,以气象观测历史数据作为研究的对象,建立了气温变化时序预测模型。本模型利用大数据相关技术对数据进行特征处理,通过深度神经网络,学习特征数据和标签数据之间复杂的非线性关系,从而实现对气温变化的趋势预测。实验结果表明,相较其他模型,本文的模型能够更好地进行时序预测,同时也证明了神经网络用于气象预测的可行性。
简介:摘要大数据所蕴含的社会、经济、科学价值,使得其商业应用不断成功,相关大数据技术高速发展。大数据相继催生出许多新的应用、新的思维、新的方法,进而在全世界掀起大数据研究热潮。近年来,许多国家制定了各种大数据研究计划。美国奥巴马政府于2012年宣布启动“大数据研究和发展计划”,将“大数据研究”上升为美国国家意志,认为大数据如同“未来的新石油”,将对科技和经济发展带来深远影响。2013年,中国第462次香山科学会议指出大数据是数字化时代的新型战略资源,是驱动创新的重要因素,正在改变人类的生产和生活方式。同年,中国大数据产业也逐步兴起;2014年,中国国家自然科学基金委设置了大数据重点项目群,全面推动中国大数据研究;2015年,国务院发布大数据发展行动纲要,将大数据正式上升为中国国家意志,再次将大数据研究推向新的高潮。
简介:为了进一步优化神经网络算法,提高网络神经算法的速率并提高其稳定性,就现有BP算法所存在的收敛速度慢以及容易陷入局部极小值的弊病,我们将进一步通过一般改进算法解决在神经网络结构优化过程中依然无法解决的问题。依据遗传算法的特征,进一步在经过改进的压缩映射遗传的基础上提出了BP神经网络优化方案。泛函分析中压缩映射原理的应用,一方面解决了困扰人们的BP神经网络算法所固有的缺点,显著地提高了神经网络算法的收敛速度,而且解决了BP神经在运行的过程中和网络连接权值初值的取值紧密相连的缺点。经过大量的计算我们得到如下数据:经过优化改进后,训练时间节约了8.3%,训练步数降低了近17.4%。经过大量的研究实验表明:经过改进后的BP神经网络算法取得了良好的效果,十分具有应用价值。
简介:本文介绍了期权定价理论,详细描述了期权定价研究的现状,并总结了当前几种期权定价主要方法及其基本指导思想。然后,结合当前期权定价方法的热点,重点阐述了神经网络在期权定价中的应用。最后,对基于神经网络预测的期权定价研究进行了总结,并指出了神经网络的期权定价的不足及研究方向。