简介:利用对称内积的Schmidt正交化方法证明了各阶主子式不为零对称阵的LDLT分解.引入两个向量组关于弱内积广义正交的概念,并构造了将两组含相同个数向量的线性无关组化为广义正交组的广义Schmidt正交化方法.最后应用这一方法证明了各阶主子式不为零矩阵的LDU分解及一些相关的结果.
简介:基于线性时变系统的稳定性理论,李雅普诺夫直接法和Gerschgorin圆盘定理求得判定广义Lienard方程振动系统达到全局同步的几种不同的代数判据.理论上比较这些不同代数判据表明:根据李雅诺夫直接法得到的代数判据优于根据Gerschgorin圆盘定理得到的代数判据,而且通过适当选取李雅普诺夫函数可以得到更优化的代数判据.Rayleigh—Duffing方程作为数值算例进一步验证了理论结果.