简介:对[0,1]上的L—可积函数ф及α>0定义下列B—D—B算子;本文研究了Mna(ф,x)当α>0时,在LP(0,1](1≤p<+∞)的一致逼近;当α≥1时在LP[O,1]及L1P[0,1]逼近度的量化估计。作者在文[4]中定义了B—D—B算子:其中fnk(X)称为Bézeief基函数文[4]研究的是B—D—B称子在C[0,1]空间中的逼近性质,本文继续[4]的工作,专研究这个算子在LP[0,1](1≤P<+∞)的逼近性质,证明了Mna(фX)当α>0时在LP[0,1]中为一致逼近,并得到了当α≥1时在LP[0,1]及L1P[0,1]中逼近度的量化估计。
简介:讨论自反Banach空间中的原——对偶锥线性优化问题的目标函数水平集的几何性质.在自反Banach空间中,证明了原目标函数水平集的最大模与对偶目标函数水平集的最大内切球半径几乎是成反比例的.
简介:对一般的Bernouli不等式满足的条件作了一个新的限定,利用二项式定理和等卜匕数列的性质并采用分类讨论的思想证明了一个新的Bernouli不等式,由此不等式证明了经济学中的等额本金还款法和等额本息还款法的差异,并利用数值计算实验验证了此差异,从而由此结论给出了针对不同人群的还贷策略.
简介:n×m非负实数矩阵的每列元素之和的几何平均值不小于其每行元素的几何平均值之和,运用它给出了一类和(或积)式不等式的简捷证明,也导出了著名不等式:Cauchy不等式、Holder不等式等的推广形式的积分不等式。