简介:基于Chen-Harker-Kanzow-Smale光滑函数,对单调非线性互补问题NCP(f)给出了一种不可行非内点连续算法,该算法在每次迭代时只需求解一个线性等式系统,执行一次线搜索;算法在NCP(f)的解处不需要严格互补的条件下,具有全局线性收敛性和局部二次收敛性.
简介:研究了Lipschitz伪压缩映射的黏滞迭代方法.设E为一致光滑Bannach空间,K为E的闭凸子集,TK→K为Lipschitz伪压缩映射且其不动点集F(T)非空,f为K上的压缩映射且t∈(0,1).若黏滞迭代路径{xt},xt=(1-t)f(xt)+tTxt且对任意初始向量x1∈K,迭代序列{xn}定义为xn+1=λnθnf(xn)+[1-λn(1+θn)]xn+λnTxn,则当t→1-和n→∞时,{xt}和{xn}都强收敛于T的不动点,同时该不动点还是一类变分不等式的解.
简介:通过构造一个特殊的锥,利用锥上的不动点指数,研究了Banach空间中二阶三点奇异边值问题多个正解的存在性.
简介:在四阶微分方程非线性项f中含有未知函数“的二阶导数u”的情况下,运用Avery-Peterson不动点定理,研究了一类四阶微分方程三点边值问题三个正解的存在性,得到了该类边值问题存在三个正解的充分条件.
简介:本文中,我们对一类推广型多线性分数次积分算子TΩ,lA_1,A_2,…,A_t进行讨论,得出它是从L~(q1)空间到L~(q2)空间的有界性,进而证明了此算子及其变形算子均是MK_(α,λ)(p1,q1)空间到MK_(α,λ)(p2,q2)空间也是连续的.
简介:利用上下解方法及Schauder不动点定理,证明了二阶非线性微分方程组三点边值问题:{y"=f(t,y,z,y',z')z"=g(t,y,z,y',z')y(-1)=A,y(1)=B,z(0)=C0,z'(0)=C1,解的存在性,并由此得到四阶非线性微分方程三点边值问题解的存在性,一定程度上推广了前人的一些结果.作为文章结果的应用,讨论了奇摄动四阶半线性三点边值问题,得到该问题解的存在性及解的渐近估计.