简介:通过分析显式有限差分格式的数值色散和数值耗散,导出一个适于有限差分格式的通用色散一耗散条件.根据群速度和耗散率之间的物理关系,确定了用以抑制数值解中伪高波数波所需要的适度耗散.在以往发展的低耗散加权基本无振荡格式WENO—CU6-M2上的应用表明,该条件可用作优化线性或非线性有限差分格式的色散和耗散的通用指导准则.此外,满足色散-耗散条件的改进WENO—CU6-M2格式还可选作低分辨率数值模拟,以三维Taylor-Green涡向湍流转捩和自相似能量衰减问题展现了它的这种能力.与经典的动态Smagorinsky亚网格尺度模型相比,在Heynolds数胁:400~3000条件下,无黏和黏性Twlor—Green涡的数值模拟结果均得到明显改善.在保持激波捕捉特性同时,与最新的隐式大涡模拟模型的计算效果相当.
简介:圆锥曲线是高中数学的重要内容,也是高考考查的重难点之一.一般来讲这类题解题思路比较简单,规律性较强,但运算过程往往比较复杂:所以很多情况下学生会觉得入手容易,但做对难.这里不仅要求学生能及时有效地利用已知的相关条件去建立一系列关系式,而且对学生的代数运算能力有较高的要求.运算不同于计算,它要求学生能够根据法则、公式进行运算及变形;能够根据问题的条件寻找合理、简捷的运算途径.这也是《考试说明》中对运算能力的考查要求.有时学生如果运算不当,就有可能陷入有始无终的困境.因此如何采用合理的手段简化运算对于顺利解决这类问题至关重要.