简介:基于解的充分必要条件,提出一类广义变分不等式问题的神经网络模型.通过构造Lyapunov函数,在适当的条件下证明了新模型是Lyapunov稳定的,并且全局收敛和指数收敛于原问题的解.数值试验表明,该神经网络模型是有效的和可行的.
简介:本文采用Lyapunov-Krasovskii泛函方法对一类变时滞细胞神经网络的全局指数稳定性进行了研究,得出了一些关于DCNN全局指数稳定性的充分条件。
简介:开展了机器学习在翼型气动力计算和反设计方法中的应用研究,实现了在更大翼型空间范围内,人工神经网络的训练和优化,建立了翼型气动力计算模型,和给定目标压力分布的翼型反设计优化模型.作为机器学习领域兴起的研究热点,人工神经网络的研究工作不断深入,有研究者尝试将其应用于流体力学的学科范畴内.文章实现人工神经网络在翼型计算领域中应用的方法如下:首先通过Parsec参数化方法,围绕基准翼型构造了一定翼型空间范围的翼型库,利用XFOIL进行数值模拟,搭建了和翼型库具有一一映射关系的流场信息库.通过训练和优化神经网络,实现了基于此模型的快速、高可信度的翼型气动力预测,以及新型的翼型优化设计方法.通过自动化编程实现样本库的批量生成,实现了不同翼型空间的样本量下,神经网络的训练和优化过程.实验结果表明,在机器学习领域中,基于神经网络的翼型反设计模型的精确性高度依赖于训练样本量的大小和覆盖范围.
简介:制造过程评价是改善制造系统效率的重要一环,传统的评价方法将每个制造系统决策单元视为黑箱来研究整体效率,忽略了中间产品转化信息及投入要素在各子过程中的配置信息。针对两阶段(第二阶段有外源性新投入)制造系统的效率评估问题,分别在固定规模报酬和可变规模报酬假设下,充分利用制造系统中间产品的转化及外源投入要素的配置信息,建立了制造系统网络DEA效率测度及分解模型,建模方法遵循客观评价原则,无需事先主观确定子效率和系统效率之间的组合关系。并将其应用于钢铁制造系统效率测度与分解,研究结果表明该方法能够挖掘决策单元内部子单元的效率情况,帮助决策者发现复杂制造过程非有效的根源,为复杂制造过程的整体效率测度及分解提供了有效的分析方法。
简介:通过对市场结构理论演变过程的回顾,认为以SCP范式为基础的传统市场结构分析框架越来越不适应于当前日益复杂的经济环境。基于此,本文提出了网络型市场结构的概念,分析了网络型市场结构的特征,讨论了网络结构型市场结构的分类,并提出了网络型市场结构的一般模式。接着,构建了网络型寡头垄断市场结构模型,分析了该模型的四个特性。之后,对2×2网络型寡头垄断市场结构存在的八种策略组合进行了合并整理,求出了在现实中经常采用的四种不同的策略组合下的Cournot产量均衡解、价格均衡解以及实现均衡时的利润。最后,通过一个算例对各个Cournot均衡解的特性进行了分析,并比较了四种策略组合的优劣。
简介:针对系统误差的不确定性可能会引起滤波精度降低或发散的问题,提出一种新的基于模型预测滤波的前向神经网络算法。首先,采用模型预测滤波估计网络在正向传递过程中的模型误差,并对其进行修正,以弥补模型误差对隐含层权值更新的影响;然后,利用模型预测滤波为神经网络提供精确的训练样本,学习待估计系统的非线性关系。将提出的算法应用于SINS/CNS/BDS组合导航系统,并与扩展卡尔曼滤波进行比较,仿真结果表明,提出的算法得到的姿态误差、速度误差和位置误差分别在[-0.25′,+0.25′]、[-0.05m/s,+0.05m/s]和[-5m,+5m]以内,滤波性能明显优于扩展卡尔曼滤波算法,表明该算法能提高组合导航定位的解算精度。
简介:本文介绍一个小型的计算机网络计划编制系统应具备的功能,以及计算机网络计划编制的方法与步骤。