简介:对于具有一定机动能力的弹道式再入目标跟踪问题,稳定性好、鲁棒性强、收敛精度高的估计方法是保证跟踪精度的关键。针对再入运动模型和测量体制的强非线性以及目标机动引起的滤波精度下降问题,提出一种将强跟踪滤波(STF)和基于三阶球面-向径容积规则的容积卡尔曼滤波(CKF)相结合的强跟踪-容积卡尔曼滤波(STCKF)。通过将强跟踪算法中的自适应渐消因子引入到滤波时间更新和测量更新方程中,在线实时调整滤波增益矩阵,能有效避免模型失准造成的滤波性能下降,使该算法兼具CKF滤波精度高和STF鲁棒性强的优点。通过数学仿真表明,改进后的STCKF可以实现对具有机动的弹道式再入目标的高精度跟踪,相对于CKF精度提高50%,并且具有更强的鲁棒性和自适应能力。
简介:讨论自反Banach空间中的原——对偶锥线性优化问题的目标函数水平集的几何性质.在自反Banach空间中,证明了原目标函数水平集的最大模与对偶目标函数水平集的最大内切球半径几乎是成反比例的.
简介:建立了非紧FC-空间中新的连续选择定理,作为应用,获得了非紧FC-空间中广义模糊约束多目标对策的弱Pareto平衡存在定理.我们的结论统一、改进和推广了一些近期文献的已知结果.