简介:对赋Luxember范数或Orlicz范数的Orlicz型序列空间,诸如古典的、广义的及参数式的,本文总结、补充、比较列出了暴露点及暴露性的充分必要刻画,并对以往结果中的错误进行了修正,从而在序列空间方面系统地完成了有关暴露性的刻画。
简介:功和能是两个密切相关的概念,它们又与系统这一概念有密切的联系。在功和能的教学中,常常忽视功和能的系统性,使学生在解决功和能的问题时不习惯于先确定系统,影响了对有关问题的正确理解。
简介:讨论了一类广义Liénard型系统(x)=p(y)k(x),(y)=-f(x,y)p(y)q(y)-g(x)h(y)非零周期解的存在性和不存在性,给出了非零周期解的存在和不存在的一类充分条件.
简介:S^p(1≤p≤∞)空间为导数属于Hardy空间H^p的复平面单位圆盘D上所有解析函数组成的空间.令函数φ和φ是D上的解析函数且φ(D)D,则将算子W(φ,φ):f→φfoφ称为加权复合算子.文章给出了当1≤q≤p≤∞,φ∈S^∞时,加权复合算子W(φ,φ)从空间S^p到S^q上的有界性的充要条件.然后通过推广经典的Fejer-Riesz不等式证明了当1〈p≤∞时,S^p到圆盘代数A上的嵌入映射是紧的.