简介:传统针对文本数据的分析,往往基于词频、词频逆文本统计量作为文本的表示特征.这类方法往往只反映了文本的部分信息,忽略了文本的内在语义特征.本文研究了中文词语衔接的概率语言模型,其基本思想在于根据文本中词语出现的先后顺序进行建模分析,该模型在短文本数据挖掘中能够很好地针对文本语义进行量化分析.主要解决两类问题:一、如何合理地将中文词转化为数字向量,并且保证中文近义词在数字空间特征上的相似性;二、如何建立恰当的向量空间,将中文文本的语义和结构特征等信息保留在向量空间中.最后结合某城市房屋管理部门留言板的实际留言文本数据,利用BP神经网络和RNN网络两种算法,实现概率语言模型的求解.与传统文本处理方法的对比说明,本文的模型方法针对短文本语义挖掘问题具有一定的优势性.
简介:结合偏最小二乘法和支持向量机的优缺点,提出基于偏最小二乘支持向量机的天然气消费量预测模型。首先,利用偏最小二乘法确定影响天然气消费量的新综合变量,建立以新综合变量为输入,天然气消费量为输出的支持向量机模型,对天然气消费量进行了预测;然后,与多元回归、偏最小二乘回归、普通支持向量机做误差检验比较,验证该方法的可行性与正确性。结果表明,此天然气消费量预测模型具有较高的精确度和应用价值。