简介:在高参数汽轮机组和航空发动机等旋转机械中,转子-密封中的气流激振力对转子非线性动力学特性的影响不容忽视.本研究中建立了转子-密封系统三维流场模型,应用计算流体动力学(CFD)软件对可压缩气流流场进行模拟计算,获得了密封流场特性.由流场计算结果进一步获得了Muszynska气流激振力模型中的相关经验系数,使得此模型更加适用于气流激振力的计算.在对转子一密封系统进行非线性动力学分析过程中应用幂级数展开形式建立了系统幂级数模型.利用平均法得到气流激振力的1:2亚谐共振分岔方程,进一步应用奇异性理论和Hopf分岔理论研究了系统1:2亚谐共振的转迁集和系统超临界Hopf分岔与亚临界Hopf分岔的存在条件.通过参数控制方法抑制了转子-密封系统出现亚临界分岔的出现,使得系统稳定性提高.本文的分析结果对工程设计和操作具有一定的指导作用和意义.
简介:通过对Pre-B?tzinger复合体中兴奋性中间神经元模型的研究,从神经元动作电位和峰峰间距(ISIs)的角度考察了模型簇发放中所蕴含的动力学特性.通过对神经元膜电容、平衡电位以及离子通道电导系数等电生理参数的考察,得出了神经元动作电位ISIs序列的各种周期分岔现象,如:加周期分岔和倍周期分岔.通过模型结果可以进一步理解Pre-Btzinger复合体中兴奋性中间神经元簇发放的转化模式和编码特性,并为研究这些簇发放特性对呼吸节律的影响提供线索.
简介:应用动力系统分岔理论和定性理论研究了一类非线性Degasperis-Procesi方程的行波解及其动力学性质,并结合可积系统的特点,利用哈密尔顿系统的能量特征,通过Maple软件绘出其相轨图,再根据行波与相轨道间的对应关系,揭示了不同类型的行波解间的转变与参数变化的关系,并且给出了不同行波间相互转换的参数分岔值,从根本上解释了Peakon产生的原因,数值模拟验证了该方法的正确性,最后给出了相应行波解的表达式。
简介:根据符号动力系统与真实动力学系统拓扑共轭的特性,本文提出动态标架分割法,把动力学系统的某时间变量序列转化成符号序列;运用Lemple-Ziv复杂度算法计算该符号序列的复杂度值,据此对动力学系统的复杂性进行分析,从而可以对动力学系统的性质进行定性地判断,以杜芬振子为例,数值模拟结果表明基于动态标架分割法计算得到的复杂度能够很好地描述系统的复杂性,并可定性地判断系统的性质。
简介:连接界面的黏滑、摩擦行为不仅是引起结构刚度和阻尼非线性的主要原因,而且是结构无源阻尼的主要来源.Iwan模型能够较好地复现连接界面的黏滑、摩擦行为.本文采用时频域交替法(AlternatingFrequency/TimeDomainMethod,AFT)研究含Iwan非线性模型的单自由度振子系统的稳态响应.时频域交替法具有频域法求解线性系统响应的高效性和时域法判断非线性力的便捷性特点,采用离散傅里叶变换和傅里叶逆变换,在频域和时域内分别求解系统响应和对应的非线性恢复力,再反复迭代计算系统的稳态响应.将时频域交替法计算结果和中心差分法计算的结果进行对比,并研究激励幅值对系统非线性特征的影响.结果表明,时频域交替法计算的结果与中心差分计算的结果具有较好的一致性,且求解效率较高,计算耗时减少50%;随着激励幅值的增加,系统的能量耗散增加,刚度降低,固有频率降低.
简介:Pre-Botzinger复合体中兴奋性神经元节律性簇放电与呼吸节律的产生关系密切.泄漏电流对神经元簇放电具有重要的调节作用.本文利用双参数分岔分析和快慢变量分离等方法,研究了泄漏电流对耦合神经元簇同步模式及其转迁机制的影响.结果表明,在不同初始条件下,当泄漏电导改变时耦合神经元分别表现为同相“fold/homochnic”型、“subHopf/homoclinic”型和反相“fold/foldcycle”型和“subHopf/foldcycle”型簇放电.本文的研究为进一步探索呼吸节律的产生机制提供了一些见解.
简介:一个可调节速度的皮带驱动的干摩擦振子系统,设其干摩擦力大小是常值且两个激励频率是谐调的,本文对这个简单的力学模型进行了研究,分析了Filippov系统中可能出现的四种余维-1sliding分岔并给出数值模拟.分析表明:该系统具有极其丰富的sliding分叉现象,较小的激励频率易引起非光滑分岔现象.