学科分类
/ 8
142 个结果
  • 简介:采用CFD/CSD双向流固耦合算法研究平板结构的气动弹性耦合特性.首先,采用CFD/CSD算法计算平板结构的颤振临界速度,并与已有文献中的实验结果进行比较验证.然后,分别对简支和固支边界条件的三维平板结构进行气动弹性特性分析,计算不同约束情况下流场分布的变化和平板结构的位移响应.同时还考虑加肋和结构材质对平板结构气动弹性特性的影响.

  • 标签: 平板结构 亚音速气流 气动弹性耦合特性 CFD CSD算法 时域响应
  • 简介:根据Timoshenko几何变形假设和Boltzmann叠加原理,推导出控制损伤粘弹性Timoshenko中厚板的非线性动力方程以及简化的Galerkin截断方程组;然后利用非线性动力系统中的数值方法求解了简化方程组.通过分析可知,板在谐载荷的作用下,具有非常丰富的动力学特性.同时研究了板的几何参数、材料参数及载荷参数对损伤粘弹性中厚板动力学行为的影响.

  • 标签: 损伤粘弹性固体 中厚板 几何非线性 非线性动力系统 分义 混沌
  • 简介:研究了两端受扭转弹簧约束的简支输流管道的固有频率特性和静态失稳临界流速.根据梁模型横向弯曲振动模态函数,由端部支承和约束边界条件得到了其模态函数的一般表达式.根据动力方程的特征方程,具体分析了约束弹性刚度、流体压强、流速和管截面轴向力等参数对管道固有频率特性和静态失稳临界流速的影响.数值分析表明,约束弹性刚度的增大使管道的固有频率和失稳临界流速明显提高;流体流速、压强和管截面受到的轴向压力的增加使管道的固有频率和失稳临界流速降低.当管道的固有频率和失稳临界流速较低时,可以通过增加端部约束的方法来提高.

  • 标签: 输流管道 简支 弹性约束 固有频率 临界流速
  • 简介:柔性飞行器在飞行过程中容易发生大变形,这种变形将导致机翼甚至整个飞行器的气动弹性和飞行动力学特性发生变化,特别是对稳定性的影响.本文采用三段式刚体假设,以变上反角的方式来描述机翼的展向弯曲变形,对一类飞翼式柔性飞行器进行了纵向动力学建模,并进一步分析了操纵面、推力和迎角与上反角的关系,以及变上反角对飞行稳定性的影响.结果表明,在保持速度和高度不变的情况下,稳定性受上反角的影响比较明显,如果变形过大,飞行器将变为动不稳定,且短周期模态不能保持.因此,为了保持飞机的纵向稳定性,必须要控制飞机的变形.

  • 标签: 柔性飞行器 上反角 动力学建模 稳定性
  • 简介:研究索拱结构中索受外激励作用下索拱之间非线性动力学问题.利用已建立的索拱结构非线性动力学耦合面内运动微分方程,采用Galerkin方法把索拱结构的面内运动方程进行离散,然后利用多尺度法对离散的运动方程进行摄动得到索主共振情况下的平均方程,研究在索受到外激励作用下索振动对拱的振动产生的影响,同时对索拱结构内共振时的稳定、分叉及混沌情况进行了分析.结果表明:索某阶频率与拱某阶频率接近时可能出现内共振现象,能量在索拱之间相互传递,原本静止的拱也可能出现共振现象,共振频域区间内索拱振动将出现跳跃、分叉及混沌等复杂的非线性动力学行为.

  • 标签: 索拱结构 非线性动力学 分叉 混沌
  • 简介:采用由闭轨分岔出极限环的思路给出了伪振子分析法的严格证明,所得结果推广了伪振子分析法的主要结论,使其能够应用于高阶Hopf分岔问题,其中分岔周期解的稳定性分析需要高于三次的非线性项.论文给出两个数值算例检验了伪振子分析法的有效性.

  • 标签: 伪振子分析法 HOPF分岔 时滞微分方程 极限环
  • 简介:在高参数汽轮机组和航空发动机等旋转机械中,转子-密封中的气流激振力对转子非线性动力学特性的影响不容忽视.本研究中建立了转子-密封系统三维流场模型,应用计算流体动力学(CFD)软件对可压缩气流流场进行模拟计算,获得了密封流场特性.由流场计算结果进一步获得了Muszynska气流激振力模型中的相关经验系数,使得此模型更加适用于气流激振力的计算.在对转子一密封系统进行非线性动力学分析过程中应用幂级数展开形式建立了系统幂级数模型.利用平均法得到气流激振力的1:2亚谐共振分岔方程,进一步应用奇异性理论和Hopf分岔理论研究了系统1:2亚谐共振的转迁集和系统超临界Hopf分岔与亚临界Hopf分岔的存在条件.通过参数控制方法抑制了转子-密封系统出现亚临界分岔的出现,使得系统稳定性提高.本文的分析结果对工程设计和操作具有一定的指导作用和意义.

  • 标签: 转子动力学 气流激振力 亚谐共振 奇异性理论 HOPF分岔
  • 简介:将微分求积法(DifferentialQuadratureMethod,简称DQM)应用于输液管道的非线性动力学分析,采用此法研究了受非线性约束输液管道的分岔现象和混沌运动问题.从悬臂输液管道模型出发,利用微分求积法形成管道的动力学方程.以分岔图、相平面图、时间历程图和Poincaré映射等分析手段考察了系统参数(管内流速)变化对管道振动形态的影响.结果表明,在所研究的系统中存在出现倍周期分岔现象和混沌运动的参数区域,这与前人的研究成果具有一致性.这为一类结构的非线性动力响应问题提供了一种新的研究思路.

  • 标签: 输液管 分岔 混沌 微分求积法 非线性动力学 结构动力学
  • 简介:通过对Pre-B?tzinger复合体中兴奋性中间神经元模型的研究,从神经元动作电位和峰峰间距(ISIs)的角度考察了模型簇发放中所蕴含的动力学特性.通过对神经元膜电容、平衡电位以及离子通道电导系数等电生理参数的考察,得出了神经元动作电位ISIs序列的各种周期分岔现象,如:加周期分岔和倍周期分岔.通过模型结果可以进一步理解Pre-Btzinger复合体中兴奋性中间神经元簇发放的转化模式和编码特性,并为研究这些簇发放特性对呼吸节律的影响提供线索.

  • 标签: Pre-Btzinger复合体 呼吸节律 ISIS 加周期分岔 倍周期分岔
  • 简介:应用动力系统分岔理论和定性理论研究了一类非线性Degasperis-Procesi方程的行波解及其动力学性质,并结合可积系统的特点,利用哈密尔顿系统的能量特征,通过Maple软件绘出其相轨图,再根据行波与相轨道间的对应关系,揭示了不同类型的行波解间的转变与参数变化的关系,并且给出了不同行波间相互转换的参数分岔值,从根本上解释了Peakon产生的原因,数值模拟验证了该方法的正确性,最后给出了相应行波解的表达式。

  • 标签: 孤立波 周期波 尖波 Degasperis-Proeesi方程 动力系统分岔理论
  • 简介:用微分求积法分析了轴向移动粘弹性梁非平面非线性振动的动力学行为.轴向移动粘弹性梁非平面非线性振动的数学模型是一非常复杂的非线性偏微分方程组.首先用微分求积法对其控制方程组进行空间离散,得到非线性常微分方程组,然后求解常微分方程组得到数值结果.在数值结果的基础上结合非线性动力学理论,利用分叉图、时间历程图、相图对其非线性动力学特性进行了分析.

  • 标签: 微分求积法 轴向移动粘弹性梁 非平面振动 混沌 分叉
  • 简介:根据符号动力系统与真实动力学系统拓扑共轭的特性,本文提出动态标架分割法,把动力学系统的某时间变量序列转化成符号序列;运用Lemple-Ziv复杂度算法计算该符号序列的复杂度值,据此对动力学系统的复杂性进行分析,从而可以对动力学系统的性质进行定性地判断,以杜芬振子为例,数值模拟结果表明基于动态标架分割法计算得到的复杂度能够很好地描述系统的复杂性,并可定性地判断系统的性质。

  • 标签: 符号时间序列 动态标架分割法 Lemple-Ziv复杂度 动力学系统
  • 简介:研究外部扰动力矩作用下航天器的混沌姿态运动,引入Deprit正则变量建立系统的Hamilton结构,应用Melnikov方法预测系统产生的稳定流形和不稳定流形的横截相交,得到系统产生混沌姿态运动的条件。研究表明:随着转子转动惯量的增加,引起系统出现混沌姿态运动的激励频率的范围逐渐减小。最后,对相空间轨线的数值模拟表明理论分析的可靠性。

  • 标签: 航天器姿态动力学 混沌 Melnilov方法 Deprit变量
  • 简介:针对现有轴承-转子系统动力学模型的不足,考虑非线性滚动轴承力、不平衡量、碰摩故障及陀螺效应,建立了滚动轴承-柔性对称碰摩转子系统非线性集中质量模型.通过数值计算与比较,结果表明:低转速下系雏响应主要表现为滚动轴承的变刚度振动,高转速下轴承变刚度振动的影响相对减弱,转子不平衡和碰摩故障对系统的影响逐渐增强,陀螺效应对高转速下对称转子的响应不容忽略.

  • 标签: 滚动轴承 碰摩故障 非线性响应 陀螺效应
  • 简介:用微分求积数值方法求解了轴向加速粘弹性梁的横向振动控制方程,其方程是一复杂的非线性偏微分方程.并在数值结果的基础上利用分叉图分析了轴向定常加速度以及轴向加速度变化幅值对轴向加速粘弹性梁的非线性动力学行为的影响.

  • 标签: 非线性偏微分方程 数值解 混沌 分叉 微分求积法
  • 简介:研究了一类二自由度模型在高速切削过程中的颤振运动.首先建立了二自由度切削运动模型,得到了四维的非线性分段方程,然后研究切削力中的动态分量对切削颤振的影响,应用特征值法解析建立了系统发生Hopf分岔的临界条件.结果表明,当分岔参数经过某一临界值时发生Hopf分岔.最后,通过数值方法对该系统进行了数值模拟,从而验证了该临界条件的有效性.

  • 标签: 颤振 高速切削 非光滑系统 HOPF分岔
  • 简介:连接界面的黏滑、摩擦行为不仅是引起结构刚度和阻尼非线性的主要原因,而且是结构无源阻尼的主要来源.Iwan模型能够较好地复现连接界面的黏滑、摩擦行为.本文采用时频域交替法(AlternatingFrequency/TimeDomainMethod,AFT)研究含Iwan非线性模型的单自由度振子系统的稳态响应.时频域交替法具有频域法求解线性系统响应的高效性和时域法判断非线性力的便捷性特点,采用离散傅里叶变换和傅里叶逆变换,在频域和时域内分别求解系统响应和对应的非线性恢复力,再反复迭代计算系统的稳态响应.将时频域交替法计算结果和中心差分法计算的结果进行对比,并研究激励幅值对系统非线性特征的影响.结果表明,时频域交替法计算的结果与中心差分计算的结果具有较好的一致性,且求解效率较高,计算耗时减少50%;随着激励幅值的增加,系统的能量耗散增加,刚度降低,固有频率降低.

  • 标签: 连接 迟滞非线性 Iwan模型 时频域交替法 稳态响应
  • 简介:为全面了解和准确预测两质点动力学系统运动特性.本文以具有固定边界的两质点动力学系统为例,构建了用于研究双自由度质点运动系统的余量谐波平衡解程序.解程序融合了谐波平衡与同伦方法优势,其高阶近似仅依赖于初始谐波近似,不需要根据前一阶近似进行调整.研究结果表明:本文给出的2-阶近似频率比已有的方法结果更加精确,相对误差不同程度减小,相应的近似响应与数值解更加吻合.因此,余量谐波平衡方法可广泛应用于其它质点动力学问题研究中.

  • 标签: 双自由度振动系统 余量谐波平衡 高阶近似 频率响应
  • 简介:Pre-Botzinger复合体中兴奋性神经元节律性簇放电与呼吸节律的产生关系密切.泄漏电流对神经元簇放电具有重要的调节作用.本文利用双参数分岔分析和快慢变量分离等方法,研究了泄漏电流对耦合神经元簇同步模式及其转迁机制的影响.结果表明,在不同初始条件下,当泄漏电导改变时耦合神经元分别表现为同相“fold/homochnic”型、“subHopf/homoclinic”型和反相“fold/foldcycle”型和“subHopf/foldcycle”型簇放电.本文的研究为进一步探索呼吸节律的产生机制提供了一些见解.

  • 标签: 簇放电 双参数分岔 快慢变量分离 pre—BiStzinger复合体 呼吸节律
  • 简介:针对传统数值方法求解微分-代数方程过程中经常遇到的违约问题,本文以空间太阳能电站太阳能接收器的简化二维模型为例,采用辛算法模拟了简化模型的展开过程,研究了辛算法在求解过程中约束违约问题.首先,基于Hamilton变分原理,将描述简化二维模型展开过程的Euler-Lagrange方程导入Hamilton体系,建立其Hamilton正则方程;随后,采用s级PRK离散方法离散正则方程,得到其辛格式;最后,采用辛PRK格式模拟太阳能接收器的二维展开过程.模拟结果显示:本文构造的辛PRK格式能够很好地满足系统的位移约束.

  • 标签: 辛PRK格式 保结构 空间太阳能电站