简介:设Gl和岛是两个连通图,则G1和G2的Kronecker积GIXG2定义如下:V(G1×G2)=V(G1)×V(G2),E(G1×G2)=((ul,vl)(u2,u2):ulu2∈E(G1),ulu2∈.E(G2)).我们证明了G×Kn(n〉4)超连通图当且仅当k(G)n〉6(G)(n-1),其中G是任意的连通图,Kn是n阶完全图.进一步我们证明了对任意阶至少为3的连通图G,如果圪(G)=δ(G),则G×Kn(n〉3)超连通图.这个结果加强了郭利涛等人的结果.
简介:令u(n)表示具有n个顶点的单圈图.在一个圈C3的一个顶点上悬挂n-3个悬挂边的n个顶点的单圈图记为U~*(n-3,0,0).本文证明了在u(n)中具有最小hyper-Wiener指数的单圈图是U~*(n-3,0,0).
简介:一个r-klee-图递归定义为一个r+1阶完全图或者通过用一个r阶完全图替换已知的r-klee-图G′中的一个顶点所得到的图.本文主要研究了r-klee-图的Hamilton-连通性和着色问题.我们证明了:每一个r-klee-图是Hamilton-连通的和它的色数是r;如果r是奇数,则它的边色数是r;如果r是偶数,则它的边色数是r+1.
简介:设G(V,E)是简单连通图,T(G)为图G的所有顶点和边构成的集合,并设C是k-色集(k是正整数),若T(G)到C的映射f满足:对任意uv∈E(G),有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),并且C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.那么称f为图G的邻点可区别E-全染色(简记为k-AVDETC),并称χ_(at)~e(G)=min{k|图G有k-邻点可区别E-全染色}为G的邻点可区别E-全色数.图G的中间图M(G)就是在G的每一个边上插入一个新的顶点,再把G上相邻边上的新的顶点相联得到的.探讨了路、圈、扇、星及轮的中间图的邻点可区别E-全染色,并给出了这些中间图的邻点可区别E-全色数.
简介:对于正确理解费曼图技术并且运用该技术来处理高能物理中的基本过程是量子场论教学中的一个重要核心。然而,在涉及到较为复杂的物理过程时,其计算通常是十分复杂繁琐的。其中最为典型的困难是对大量矩阵的求迹运算。因此,在教学中引入基于计算机程序处理费曼图的有关方法,能有效提高理论物理专业研究生解决此类问题的能力。基于REDUCE科学计算程序,具体介绍了如何在教学活动中实现对上述困难提供高效便捷的解决方案。