简介:利用Hausdorff非紧测度理论、线性算子解析半群理论、分数幂算子和Darbo不动点定理等,得到了当相关半群T(t)在失去紧性等较弱的条件下,一类中立型无穷时滞积分一微分方程适度解的存在性。
简介:在求解常系数线性微分方程组时,关键是基解矩阵的计算.给出了利用哈密顿一凯莱定理计算基解矩阵的一种方法,并通过实例说明了这种方法的特点和在简化计算方面的有效性.
简介:利用新的比较结果和半序方法,研究TBanach空间中二阶积-微分方程组初值问题解的存在唯一性及逼近解的迭代序列和误差估计.
简介:研究了Bernoulli微分方程的通解、积分因子,进而讨论了可化为Bernoulli方程的两类方程,并给了积分方程中的Bernoulli方程和它在数学建模中的应用.
简介:本文研究常微分方程组情形的Ambrosetti-Prodi型问题.在非线性项超线性,凸性等条件下.得出随着参数的变化。问题无解,有唯一解,至少有两解的结论。
简介:应用Gteen函数将分数阶微分方程边值问题可转化为等价的积分方程.近来此方法被应用于讨论非线性分数阶微分方程边值问题解的存在性.讨论非线性分数阶微分方程边值问题,应用Green函数,将其转化为等价的积分方程,并设非线性项满足Caratheodory条件,利用非紧性测度的性质和M6nch’s不动点定理证明解的存在性.