简介:摘要:随着互联网技术的发展和应用,网络安全威胁识别与防御已成为当前亟需解决的问题。本研究采用大数据技术,对网络安全威胁进行识别与防御研究。基于大数据分析框架,对海量网络数据进行分析和处理,采用机器学习方法对网络流量中的异常行为进行准确识别,并构建了实时威胁识别与防御模型。研究结果表明,与传统网络安全防御策略相比,这种方法在识别网络异常行为和应对网络攻击上更具有效性和实时性,大大提升了网络安全防护的能力。此外,本研究进一步对比了不同机器学习算法在网络安全威胁识别中的性能和效率,为选择更为高效的网络安全防御策略提供了有益参考。本研究有助于促进网络安全威胁识别技术的发展,提高网络安全防护的预警水平和应对能力,充分发挥大数据在网络安全领域中的优势。
简介:摘要:随着信息技术以及互联网的快速发展,网络安全问题日益突出。本研究旨在探讨结合人工智能技术对网络安全进行有效检测和防护。首先,通过构建一种基于人工智能的网络安全威胁感知模型,对网络异常行为进行精确快速识别。其次,基于深度学习的网络入侵检测系统用于识别各种未知的或者复杂的入侵方式。研究结果显示,相比于传统的基于规则和特征的检测技术,基于人工智能技术的网络安全防护系统对于网络安全威胁的检测准确率显著提高,且对大规模和复杂的网络环境均能提供有效防护。此外,该技术还具有学习能力强、自我适应能力强等优势,对于未知的网络威胁也能及时作出准确反应。本研究成果对于提高网络安全防护水平以及保障网络空间安全具有重要的实践意义。