简介:Burn-in算法和AGREE算法是目前应用广泛的基于实际河网高程强迫修正的河网提取算法.该算法能有效提取出同真实河网高拟合度的模拟河网,但某些情况下,所提取的河网会产生“断裂”现象.河网“断裂”现象的产生在于实际河网栅格高程“高估”和“低估”所引起的局部流向计算错误,其中所有“低估”类以及大部分“高估”类影响都是可以通过填洼等方法加以消除的,即不会产生“断裂”问题.真正产生“断裂”的原因是:存在“高估”类河网栅格且“高估”所带来的影响无法通过填洼等操作加以消除.基于此,对Burn-in算法和AGREE算法进行修正,提出一种消除“高估”类影响的解决方案,从根本上解决河网“断裂”问题,实现程序自动化处理.渭河流域实例应用表明,改进算法可有效解决模拟河网“断裂”问题,且适用于多种基于高程的强迫修正算法.
简介:摘 要:神经网络是当今最具魅力的一个新兴学科生长点,已发展成为现代科学技术的新热点,其迅猛发展将对整个信息科学产生巨大的影响。神经网络在数学建模中的应用也非常的广泛。