学科分类
/ 17
335 个结果
  • 简介:利用Mawhin的重合度理论,研究了一具时滞的Liénard型方程的周期解的存在性,并举例说明了其应用.

  • 标签: 重合度 LIÉNARD型方程 周期解
  • 简介:基于右上角元素值域的闭性和某空间族的维数扰动,得到了缺项四分块算子矩阵(AC?B)存在可逆补的一个新的充分必要条件,结果表明该类补问题可以转化为缺项上三角算子矩阵的可逆补加以解决.

  • 标签: 块算子矩阵 可逆性 补问题
  • 简介:讨论了一中立型退化时滞微分方程的周期解的存在条件,并且给出了二维退化滞后微分方程的周期解的存在性问题,且给出了一个充要条件和两个充分条件,最后举例说明结论的有效性。

  • 标签: 中立型 退化时滞微分方程 周期解
  • 简介:设m为正整数,n=2m,p为一奇素数,令d=pm+1/2,elm,其中a∈Fpn,γ是Fpn中的一非平方元.本文研究了有限域Fpn上的函数F(x)=Tr1(axpm+e+1-γdxpm+1),利用有限域上的二次型理论,证明了在role为奇数的条件下或role为偶数但a(pn-1)/pe+1)≠1的条件下,F(x)为P元弱正则Bent函数.

  • 标签: p元Bent函数 WALSH变换 二次型 有限域
  • 简介:讨论了年龄相关的半线性时变种群系统的最优捕获控制问题.根据微积分方程及泛函分析的知识证明了最优捕获控制的存在性,得到了捕获控制为最优的必要条件.

  • 标签: 半线性种群系统 最优捕获 必要条件
  • 简介:令Hn(p)表示形如f(z)=zp+∑+∞k=π+pakzk,且在单位圆U=(z;|z|<1}内解析的函数f(z)的全体所成的函数.本文应用微分从属技巧得到了p-叶β级星像函数的一些充分条件,所得结果推广了一些作者的相关结果.

  • 标签: 解析函效 p-叶函效 星像函效 从属
  • 简介:本文讨论了一二阶线性时变系统在临界情况下的稳定性,给出了保证该系统零解稳定的充分条件,这一结果将拓宽控制论中二维线性时变控制系统的研究范围。

  • 标签: 线性的 时变系统 临界情况稳定
  • 简介:利用临界点理论研究具有部分周期位势的非自治常p-Laplace系统周期解的存在性.在具有p-线性增长非线性项时,根据广义鞍点定理,得到了系统多重周期解存在的充分条件.

  • 标签: 常p—Laplace系统 周期解 临界点
  • 简介:研究了一椭圆边值问题在球外部区域上正径向解的存在性,当非线性项f(u)关于u超线性或次线性增长的情形,获得了该问题正径向解的存在性.

  • 标签: 椭圆边值问题 球外部区域 正径向解
  • 简介:利用临界点理论中的山路引理,研究一分数阶Kirchhoff型方程在次临界增长条件下非平凡解的存在性,进一步统一和丰富了已有文献的相关结果.

  • 标签: Kirchhoff型方程 非局部椭圆算子 山路引理
  • 简介:本文提出了一Logistic时滞模型的随机离散形式,并对其进行了研究.首先,讨论了相对应的确定性离散模型的稳定解.其次,在一些简单的条件下,证明了随机离散Logistic方程的渐近稳定性.最后,利用数值仿真说明了主要结果.

  • 标签: 随机稳定 Logistic差分方程 时滞Lyapunov理论鞅收敛定理
  • 简介:考察一带幂次非线性项的Schrodinger方程的Dirichlet初边值问题,提出了一个有效的计算格式,其中时间方向上应用了一种守恒的二阶差分隐格式,空间方向上采用Legendre谱元法.对于时间半离散格式,证职了该格式具有能量守恒性质,并给出了L^2误差估计,对于全离散格式,应用不动点原理证明了数值解的存在唯一性,并给出了L^2误差估计.最后,通过数值试验验证了结果的可信性.

  • 标签: 非线性SCHRODINGER方程 Legendre谱元法 误差分析
  • 简介:利用概率度量空间中A—proper映射拓扑度的基本性质,在投影完备的Z—P—S空间中研究了非线性映射的不动点问题,得到了一些新的结果.

  • 标签: Z- P-S空间 A—proper映射 拓扑度 凸集