学科分类
/ 1
8 个结果
  • 简介:空间绳网的展开效果是空间绳网捕获任务成功的关键所在,而空间绳网展开效果的性能指标和设计参数都数目较多,且单次仿真试验耗时较长,为了避免进行耗时极长的全析因仿真试验,考虑采用正交试验设计方法以减少试验次数.本文针对影响空间绳网展开效果的设计参数开展了灵敏度分析,首先提出了空间绳网展开的性能指标和设计参数,然后基于正交试验设计安排仿真试验,获得了正交试验结果,最后综合运用极差法和方差法,对正交试验结果的各项性能指标依次进行了参数灵敏度分析.通过本文研究,精简了设计参数和待优化的性能指标的个数,为下一步的空间绳网展开参数优化设计打好了基础.

  • 标签: 空间绳网 正交试验 灵敏度分析
  • 简介:分析动力学与分析结构力学在数学理论上是一致的.振动与结构力学问题,其实只是一个符号之差,分析力学方法对两方面可通用.双曲型偏微分方程与椭圆型偏微分方程也是差一个符号.虽然性质不同,但分析上有共同之处.本文提出在有限元分析方面,不用对时间、空间分别离散而是组成混和的时空混和有限元网格.数值结果表明,时空混和有限元是有前途的.

  • 标签: 分析结构力学 时空混和元 双曲型偏微分方程 多尺度
  • 简介:支持向量机是一种基于统计学习理论的新的机器学习方法,该方法已用于解决模式分类问题.本文将支持向量机(SVM)用于混沌时间序列分析,实验数据采用典型地Mackey-Glass混沌时间序列,先对混沌时间序列进行支持向量回归实验;然后采用局域法多步预报模型,利用支持向量机对混沌时间序列进行预测.仿真实验表明,利用支持向量机可以较准确地预测混沌时间序列的变化趋势.

  • 标签: 时间序列分析 混沌 支持向量机
  • 简介:首先基于Euler-Bernoulli原理,建立了一柔性悬臂梁撞击系统的动力学方程,并给出了模态分析方法;然后在若干基本假定和定义的基础上,利用Karhunnen-Loève展开这一正交分解手段,给出了体现动力系统主要特征的降阶模型,可将系统的本征值进行新的表述;最后将所提方法应用于柔性悬臂梁撞击系统的降阶分析过程中,并给出了相应数值例题.结果表明:本方法可以用少量的模态准确模拟可控系统的动力学特性,可为系统控制研究提供基础.

  • 标签: 降阶方法 撞击 ve 柔性梁 柔性悬臂梁 动力学方程
  • 简介:在受迫VanderPol振动系统的近似解的基础上,获得驱动系统的虚拟轨线.将虚拟轨线代入驱动一响应振动系统的近似误差方程,再用多尺度法求得同步时间关于反馈增益的分析表达式,并且将数值与分析结果进行比较表明:用该方法求得的同步时间与反馈增益的关系和数值模拟结果相当一致.这方法也适用于研究自激VanderPol振动系统.

  • 标签: 受迫Van der Pol振子 虚拟轨线 多尺度法 同步时间
  • 简介:针对传统数值方法求解微分-代数方程过程中经常遇到的违约问题,本文以空间太阳能电站太阳能接收器的简化二维模型为例,采用辛算法模拟了简化模型的展开过程,研究了辛算法在求解过程中约束违约问题.首先,基于Hamilton变分原理,将描述简化二维模型展开过程的Euler-Lagrange方程导入Hamilton体系,建立其Hamilton正则方程;随后,采用s级PRK离散方法离散正则方程,得到其辛格式;最后,采用辛PRK格式模拟太阳能接收器的二维展开过程.模拟结果显示:本文构造的辛PRK格式能够很好地满足系统的位移约束.

  • 标签: 辛PRK格式 保结构 空间太阳能电站
  • 简介:基于连续Galerkin方法,给出非完整约束下多体系统时间离散的变分数值积分方法.首先对非完整多体系统Hamilton正则方程的弱形式进行时间离散,得到变分积分公式,然后讨论该积分方法对能量及约束的保持,最后以蛇板为例对该方法进行数值验证和比较.

  • 标签: 多体系统 非完整约束 数值积分 GALERKIN方法 蛇板
  • 简介:研究了乘性噪声和加性噪声共同作用下含有两种不同时滞项的双稳系统中的平均首次穿越时间.首先通过近似方法得到了平均首次穿越时间的解析式,然后研究了乘性噪声强度、时滞量及噪声关联强度对平均首次穿越时间的影响.当噪声关联强度取正值时,平均首次穿越时间T1(x-→x+)是乘性噪声强度及两种时滞量的非但调函数,是噪声关联强度的单调递增函数.包含在确定力与振荡力中的时滞量分别影响T1(x-→x+)的最大值及对应的噪声强度.平均首次穿越时间T2(x+→x-)是包含在确定力中的时滞量的非单调函数,是乘性噪声强度、另一种时滞量及噪声关联强度的单调递减函数.

  • 标签: 平均首次穿越时间 时滞 乘性噪声 加性噪声