简介:随着电力用户的增加,各种电力用户产生的数据,用传统的简单的负荷预测方法难以满足人们对于大数据的分析。大数据时代的来临,在电力系统中不断显现出来的。随着智能电网、通信网络技术和传感器技术的发展,直接导致了电力用户侧数据呈指数式增长,使电力用户侧大数据变得十分复杂。本文主要是针对电力用户侧数据的一些特点提出一些并行负荷预测方法。电力用户侧数据特征有数据数量大、数据结构类型繁多和更新的速度快。电力用户侧大数据在存储处理这些数据上对我们研究这些数据是一个挑战。本文是基于随机森林算法的并行负荷预测方法,通过现代热门的云计算,对影响数据的历史负荷、温度、风速等数据进行并行化分析。
简介:摘要随着电力市场的发展,负荷预测的重要性日益显现,并且对负荷预测精度的要求越来高。传统的预测方法比较成熟,预测结果具有一定的参考价值,但要进一步提高预测精度,就需要对传统方法进行一些改进,同时随着现代科学技术的不断进步,现代负荷预测的理论会越来越成熟,预测的精度越来越高。做好电力负荷预测是电力供应公司的重要任务之一,也是确保电网规划质量的关键。基于电力负荷预测的概念,本文详细描述了城市电网规划负荷预测方法的分类和常规负荷预测方法,并分析了其优缺点。最后,结合实例,如何在电网上进行电力负荷预测。其规划的应用价值证实了电力负荷预测在电网规划中的重要性。
简介:摘要在电力系统中,中、长期负荷预测是电网规划中的基础性工作,它为电网规划提供了必不可少的基础数据,其精度的高低直接影响着整个规划工作的优劣,因此准确的中、长期负荷预测的准确性就显得尤为重要。本文就目前电力系统中的经典预测方法、传统预测方法和现代预测方法做个一简单的介绍,对负荷预测方法的改进提供理论基础。
简介:摘要负荷预测数据是电力系统运行和规划的重要依据,精准的负荷预测对于提高电力系统实际运行的经济性和可靠性有着非常重要的意义。我国正在推进电力市场的体质改革,对于负荷预测的研究更显得尤为重要。因为对于负荷预测的系统对电力市场提供着重要的技术支持,为物资贸易管理系统以及决策制定支持系统提供数据支持,在电力市场进行运营的同时也让各种各样的负荷预测方法迸发出了新的活力。因此预测未来长期负荷变化比较可行的也是最有效的方法就是对电力负荷的历史纪录数据进行整理观察,然后针对实际情况和现有的资料查找适合实际情况的负荷预测方法。目前,电力系统长期负荷预测法主要有趋势外推法、时间序列法、回归分析法以及灰色预测法等,而其中灰色计算法对于历史数据要求少,并且对数据分布无特殊要求以及限制,具有运算简便和可检验的优点。故本文选取灰色预测法对长期电力负荷进行仿真运算,检验其对于长期负荷预测的作用。