简介:在对浙江省某铜矿进行瞬变电磁勘查时,由于感应激发极化效应的影响,造成瞬变电磁晚期测道的数据发生倒转。采用常规的瞬变电磁数据处理方法难以处理,造成晚期测道数据不可用,影响TEM的探测深度及精度。针对这个情况,采用Cole—Cole模型分析了均匀半空间模型中直流电阻率、充电率、时间常数以及频率相关系数对磁性源瞬变电磁响应的影响规律。利用奇异值分解法(TheSingularValueDecomposition,简称SVD)对实测TEM数据进行分析及反演,并且从瞬变电磁响应数据中分离出勘探区瞬变电磁测量数据Cole-Cole模型的各参数,将分离出来的参数用于探测结果的辅助解释。经过分析得出充电率和频率相关系数对瞬变电磁响应的影响较大,而直流电阻率和时间常数对其影响较小的结论。通过常规方法和奇异值分解法对实测数据分别进行处理,发现后者视电阻率断面图的异常更加突出,从而较准确的圈定了铜矿体地范围,此结论得到了钻孔的验证,与实际地质情况吻合较好。
简介:本文提出的储层物性参数同步反演是一种高分辨率的非线性反演方法,该方法综合利用岩石物理和地质统计先验信息,在贝叶斯理论框架下,首先通过变差结构分析得到合理的变差函数,进而利用快速傅里叶滑动平均模拟算法(FastFourierTransformMovingAverage,FFT-MA)和逐渐变形算法(GradualDeformationMethod,GDM)得到基于地质统计学的储层物性参数先验信息,然后根据统计岩石物理模型建立弹性参数与储层物性参数之间的关系,构建似然函数,最终利用Metropolis算法实现后验概率密度的抽样,得到物性参数反演结果。并将此方法处理了中国陆上探区的一块实际资料,本方法的反演结果具有较高的分辨率,与测井数据吻合度较高;由于可以直接反演储层物性参数,避免了误差的累积,大大减少了不确定性的传递,且计算效率较高。
简介:地震低频信息能够提高分辨率与成像精度,改善反演质量,甚至直接进行油气检测,需要对其进行有效保护与拓展。对于子波而言,缺失低频信息会导致主瓣幅度降低、第一旁瓣幅度增加,并出现次级旁瓣呈周期震荡衰减的现象;从合成地震记录和典型地质模型来看,低频缺失会产生假同相轴,造成分辨率提高的假象,且模型不同位置的特征存在一定差异;对缺失低频的模型数据进行波阻抗反演,会造成构造失真、岩性改变的假象,特别是高陡构造和薄互层。针对缺失低频的地震资料,本文还研究了基于压缩感知与稀疏约束的拓频方法,开发了相应的模块,并对实际CIP道集进行处理,取得了较好的应用效果。
简介:常规的时间一空间域和频率一空间域预测滤波方法假设地震记录由地震信号和随机噪声两部分构成,即所谓的加噪声模型,但是,在对随机噪声进行估算时,又假设随机噪声可以通过预测误差滤波器由地震记录中进行预测,即所谓的源噪声模型。这种前后不一致的噪声模型降低了该类方法的去噪能力和保幅性能。为此,本文提出了一种基于反演的时空域随机噪声衰减方法。它首先从地震数据中估算预测滤波算子,该算子表征了地震信号的可预测性,自适应地描述了地震信号的空间结构。在得到预测误差算子之后,将该算子作为正则化约束引入到地震信号反演系统,由含有随机噪声的地震数据直接反演地震信号。不同于常规随机噪声衰减方法,该方法将随机噪声衰减问题归结为正则化约束下的地震信号反演问题,克服了常规方法噪声模型的不一致性问题。我们采用模型数据和实际数据进行了实验分析,并与常规方法进行了效果对比。实验结果表明:与常规方法相比,本文方法在噪声压制的同时,没有对有效信号产生明显伤害,具有更好的振幅保持能力。
简介:山区重力勘探中,重力外部校正是重力勘探料处理和解释的前提,其内容包括地形校正、中间层校正等.本文在分析常规外部校正方法的基础上,提出了一套适合于山区重力勘探的球面地形校正及有限球壳中间层校正方法,并严格推出了球面地形校正公式.对中国南方ZJJ地区重力资料处理结果表明,该方法提高了地形校正的精度,使山区重力资料品质达到或接近平原区的水平.
简介:从大量的地震属性中提取最能反映地质特征的综合属性是储层预测技术的关键,通常选用降维方法来优选属性。目前应用最为广泛的线性降维方法。但是,由于地震属性与地质特征的关系通常是非线性的,基于线性变换的地震属性降维优化方法不能充分地反映这种非线性关系,降低了储层预测的精度。流形学习是一种新的非线性学习方法,它是通过保持数据局部结构的方式将高维数据投影到低维空间,挖掘和发现隐藏在数据中的内在特征与规律性,开拓了地震属性降维优化研究的新领域。本文首次实现了3D地震数据的层问属性特征提取,讨论了LLE方法及其关键技术,并以奥陶系礁滩相储层实例说明LLE和PCA两种方法降维及聚类的不同效果。理论模型分析和实例应用表明:LLE较好地保持了数据本身的原始结构;提取的综合属性和聚类相图较好地刻画了沉积相带、储层和流体的特征。这说明流形学习具有更好的特征提取性能。
简介:井地电位成像是通过套管向井中供电或将电源放在井中,在地表观测电位异常的一项技术,其供电源有线源和点源两种类型。为了研究这两种电源对地下异常体产生的电位异常特征,本文针对不同激励源,采用有限差分方法进行数值模拟研究,在线性方程组求解电位时引入不完全Cholesky共轭梯度(ICCG)迭代方法,分别实现了点源和线源井地电位成像技术的三维正演。最后,基于阻尼最小二乘法实现了井地电位成像技术的电阻率三维反演。设计不同地电模型分别进行正演和反演试算,正演结果表明,供电电源的类型不同,异常体在地表的电位异常特征也不同;反演结果表明,低阻体的反演结果要好于高阻体,点源置于异常体下方时反演的电阻率对异常体边界的识别比线源更加准确。
简介:类中梯装置三维激电成像技术兼顾了激电测深与激电剖面二者的特点,能快捷高效的获得测区三维电阻率及极化率信息,空间分辨率高,探测深度大。本文从类中梯装置的数据采集方式入手,阐述了采用类中梯装置进行三维激电成像的工作方式.建立了一个三维地电模型,采用类中梯装置进行三维正演模拟,并进行反演及成像。数值模拟结果表明,采用类中梯装置进行三维激电成像能较好地刻画实际地电模型的特点。以甘肃省某多金属矿为例,利用阵列式电磁法综合测量系统,进行了三维大功率激电成像技术的应用研究。实际应用结果表明,采用三维激电成像技术,可以多角度、多细节显示测区地下介质电阻率、极化率的分布情况,明确电性突变界面的延展状态,快速圈定成矿有利区。该研究对多金属矿产勘探等领域具有一定的指导性意义。
简介:通过地震数据获取裂缝储藏中流体的性质并对流体类型进行识别,是地震勘探岩性反演的重要问题之一。由于地震波的速度、储层的密度等弹性参数对某些流体不具有很强的敏感性,使只依赖振幅信息进行流体识别的传统AVO方法面临困境。作为传统叠前振幅反演的一个拓展,频变AVO(FDAVO)技术进一步考虑了振幅对频率的依赖关系,将这种依赖关系与地下裂缝结构、流体填充对应起来,能带来更丰富的流体信息。利用该技术,本文提出了一种基于地震数据参数化Chapman模型的贝叶斯反演新方法(BIDCMP),它包含两步算法,即,FDAVO反演储层的非弹性属性和贝叶斯框架下的流体识别。首先,通过匹配观测数据和模型数据,构造差函数反演裂缝储层非弹性参数。随后,在贝叶斯框架下,使用马尔科夫随机场(MRF)作为先验模型,联合多参数场识别流体。本方法在计算过程中,除综合考虑了弹性参数场、测井资料等常规信息外,还特别地加人了第一步中反演得的非弹性参数的约束,从而充分利用了流体粘性差异,最后在最大后验概率(MAP)准则下输出最佳岩性一流体识别结果。分别对合成地震记录和模拟岩性—流体剖面验证本文方法的有效性,结果证明本文方法获得的流体识别结果准确可信。