简介:研究了Lorenz非线性系统中使用的集合平均方法来减小计算误差的效果,通过检查5组数值试验(每组20个样本)的结果发现:集合平均对计算误差的减小和消除不如高精度算法有效,这主要体现在以下几方面:1)普通的算法和双精度的计算环境中,若截断误差是主导误差(当初值误差很小时),各集合的平均结果并不收敛于真值,而是收敛于含截断误差的数值解;2)若初值误差为主导时,系统受到初值误差增长规律的影响,数值解收敛于由初值误差主导的误差解;3)这两种误差量级接近的时候,两种误差都无法消除掉。对解的统计特征进行研究表明,可信的数值解与含计算误差的数值解有许多相似的地方,但是与集合平均的数值解有很大不同,同样说明了集合平均不适用于减小计算误差这样的问题。此外,试验结果表明即使数值解的概率分布形式基本正确,也不能保证数值解是正确的。