简介:理想条件下,均匀线阵的互耦矩阵可用一带状、对称Toeplitz矩阵进行建模。然而实测数据表明,均匀线阵的互耦矩阵具有对称性,但不具有Toeplitz性,此时仍按理想情况建模,会导致DOA估计不准甚至完全失效。基于RBF神经网络,提出了互耦矩阵非Toeplitz条件下的DOA估计方法。算法利用了信号协方差矩阵的对称性和对角线元素不含信号DOA信息的特点,取协方差矩阵的上三角的元素作为网络输入,不仅减少了网络的输入数,同时还提高了与阵列法线夹角60°外的DOA估计精度。实验仿真结果验证了算法的有效性。
简介:对于极化敏感L型阵列的多参数联合估计问题,采用传统的多重信号分类(MUSIC)算法所需计算量大,采用旋转不变子空间(ESPRIT)算法需要考虑参数配对问题。提出了模值约束下的求根多重信号分类(root-MUSIC)算法,首先利用L型阵列中两个相互垂直的线阵构造两子阵接收数据的自相关函数,采用root—MUSIC算法进行波达方向角(DOA)估计,然后根据模值约束条件构造代价函数,通过闭合式解得到极化参数估计。该算法与传统MUSIC算法相比,大大减少了计算量,同时能够实现参数自动配对,避免了ESPRIT算法的不足。计算机仿真结果表明,该算法的角度估计性能与传统MUSIC算法接近,优于ESPRIT算法,且算法收敛速度快。