简介:摘 要:YOLOv5是一种目标检测算法,它在多个数据集上取得了优秀的表现,是目前最先进的目标检测算法之一。传统YOLOv5算法用于变电站鸟类视频识别场景时,由于鸟类为小目标类型,容易出现预测框和真实框不相交,无法进一步学习训练的情况,需要对此算法进行改进并辅助以卡尔曼滤波目标跟踪算法,来达到对鸟类目标的识别及跟踪效果。
简介:摘要:随着深度学习的不断进步,已经将应用延伸到光电跟踪设备,优质的检测跟踪算法决定光电跟踪设备的工作效率。本文提出一种改进YOLOv4的检测跟踪算法,结合空洞卷积对其网络结构进行改进,加入空洞空间金字塔池化模型,以此增大感受野,聚合多尺度上下文信息。然后,通过 K-means聚类方法生成更适合目标检测的初始候选框。其次,提出一种对象选择器,用来选择检测和跟踪轨迹中的最优候选框;最后,将最优候选框和跟踪轨
简介:摘要:仓库管理活动中,常常伴随着设备货物行为、人员行、人员与货物交互行为等活动,行为复杂,分布场景广泛,结合视频监控技术,采用OLOv4物体检测算法、融合OpenPose检测人骨骼点,实现仓库环境中物品拿取行为的监测。模拟试验表明这种算法识别的方法能有效解决仓储场景中物品拿取的识别监测。
简介:摘要:随着互联网迅速发展和新闻数量的激增,如何准确获取新闻的重点和核心内容已成为一个亟待解决的问题。由于中文新闻文本摘要的关键信息提取准确率较低,因此提出了基于实体感知的生成式摘要算法,旨在全面捕捉新闻中的核心信息。该算法将实体特征融入T5-Pegasus摘要模型中,使模型能够学习新闻中不同词语之间的实体相关性,从而提高摘要的准确性。实验结果表明,与传统的T5-Pegasus模型相比,该模型生成的摘要在ROUGE-1、ROUGE-2和ROUGE-L指标上均有提升,有效提高了事实准确性,生成了更好的文本摘要。
简介:摘要:在公共场所吸烟的行为不仅危害吸烟者本身的健康,同时不规范的吸烟行为也是火灾发生的隐患,每年约20%的火灾是由吸烟引起的。随着吸烟人群的逐年增加以及禁烟执法力量的严重不足,室内吸烟行为仍屡禁不止。为了确保禁烟政策的实施,社会迫切需要能够有效检测吸烟行为的智能方法来辅助禁烟。传统的吸烟检测方法是烟雾检测,常见于室内,还有基于光电烟雾传感器的吸烟报警器,常见于高铁、列车等禁烟的公共场所,这类检测方法只能检测出大概范围,无法精确地识别吸烟对象。随着社会发展,吸烟与人们对生活健康的矛盾日益凸显。基于大量数据的深度学习目标检测算法学习目标特征和规律来监测吸烟行为以取缔灵敏度低下的烟雾传感器。近年来,深度学习的目标检测算法被广泛应用于各个领域。本文基于YOLOv7算法,在Windows10系统下搭建了深度学习环境,建立数据集,训练并评估模型,根据评估结果有针对性的对YOLOv5进行了结构改进和参数寻优。
简介:摘 要:插电式混合动力汽车(PHEV)及油电混合动力成型(HEV)凭借其独特的优势已成为混动汽车的重要组成部分和发展趋势,让混合动力车型在大部分工况下给客户带来纯电体验是影响新能源车型竞争力的关键因素之一。本论文通过建立数学模型来研究和分析如何提升插电混动车型的纯电体验感。首先,通过收集和分析关于混合动力车型的相关数据,我们建立了一个数学模型来模拟车辆的纯电驱动系统。通过该模型,我们探索了优化车辆性能和提高用户体验的各种方法,包括能量管理策略、驱动模式选择和电池容量优化。实验结果表明,在硬件无法进行更改的状态下,通过优化能量管理的策略,插电混动车型的纯电体验感可以得到显著提升。
简介:摘要:复杂场景中检测交通标志对于智能导航与自动驾驶具有重要研究意义与实用价值,针对目前交通标志检测率较低的问题,本文提出了基于深度学习网络的交通标志检测系统,系统包括图像采集模块、交通标志检测模块和导航模块。其中交通标志检测模块采用最新YOLOv6网络为基础,基于重参数化结构,提升了检测准确率,通过软件界面可以在视频中实时准确的标志出交通标志。经过实验验证,本文交通标志检测系统有更高的检测准确率,具有较好的应用价值。
简介:摘要:针对目前灾害发生后的救援需求,本文开发了一款基于yolov5目标检测技术的两栖侦察设备。机载摄像头通过图传设备将灾后现场实时传递到地面工作站,运行算法对画面进行实时检测。本设备凭借自身两栖的机械优势,可以深入救援人员无法到达的区域进行勘测,帮助救援人员判断灾情,锁定被困人员的位置。目标检测效果良好,能够较好地反映实际情况,帮助救援人员快速开展救援行动。该无人机可以有效地提高灾后搜救效率,能一定程度上实现救援的智能化、信息化。