简介:对任意给定的矩阵,通过划分矩阵指标集,利用定义和不等式的放缩,给出广义Nekrasov矩阵一类新的判别法,改进和推广了已有相关结果,并用数值实例说明了所得结果的优越性。
简介:数学思想方法是数学的灵魂,数学学习的好坏主要在于对数学思想方法的掌握程度.方程思想是一种重要的数学思想,高考成绩的高低往往在于方程思想运用能力的强弱.所谓方程思想是指从分析问题的数量关系人手,将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式.用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组).这种思想在代数、几何及生活实际中有着广泛的应用.本文主要是在方程思想的指导下利用判别式来处理有关不等(范围、最值等)的问题和若干解题方向不明的问题.
简介:介绍矩阵的Kronecker积的概念,引入矩阵的拉直公式,并通过实例阐述矩阵的Kronecker积在求解矩阵方程中的应用.