简介:本文讨论形如d/dt(x(t)+D(t)x(t-k)=f(t,x(t),x(t-h),u(t))的非线性中立型控制系统函数能控性,给出该类系统的函数能控性和零函数能控性的判定定理,所得结果在实际系统的设计、分析等方面是非常实用的。
简介:本文综述随机动力系统的基本概念、理论、方法与应用,内容包括Brownian运动、Lévy运动和随机微分方程及其解的刻画。重点讨论通过量化指标、不变结构、几何方法和非高斯性态来理解随机动力学现象。本文还介绍了段金桥的著作《AnIntroductiontoStochasticDynamics(随机动力系统导论)》的基本内容。
简介:本文利用正规则型理论讨论了一类二维离散动力系统的动力学性质,分析了其正平衡点的稳定性,并讨论了Neimark—Sacker分岔稳定性与方向。通过数值模拟验证了所得结果的正确性。
简介:讨论一类抽象Volterra型积分算子,利用此获得含控制参数的抽象动力方程边值问题的解。这种新的求解法我们称为积分算子求解法。
简介:系统的不确定和外部干扰是控制理论的主要敌手。最近二十年出现了一个新的对付不确定的控制方法称为自抗扰控制。本文旨在介绍一本这方面的新书:ActiveDisturbanceRejectionControlforNonlinearSystems:AnIntroduction,及其相关的背景。该书是一本自抗扰控制数学理论著作。为了引出本书的主要内容,我们扼要介绍了几种其他的对付系统不确定的控制方法,包括鲁棒H∞-控制、滑模控制、自适应控制以及内模原理,说明自抗扰控制的主要思想和与这些方法的异同之处。特别是指出了自适应控制、内模原理的估计和消除策略及其在自抗扰控制中的大规模应用。
简介:讨论了具有时滞和反馈控制的离散Leslie概周期捕食与被捕食系统.利用差分不等式和通过构造适当的Lyapunov函数,得到了系统持久性和全局吸引的充分条件.利用泛函概周期的壳理论,得到了系统存在唯一全局吸引概周期解的充分条件.