简介:在Leslie-Gower捕食模型中引入乘积型Allee效应,并分析模型的性质.首先,模型存在正向不变集,解是一致有界的.其次,讨论了平衡点存在和稳定的条件,并利用Liapunov函数方法得到正平衡点全局渐近稳定的充分条件.最后,根据Hopf分岔定理分析了分岔现象出现的条件和在这个过程中产生的极限环.
简介:考虑研究生招生规模、教育质量和就业率3者之间的相互影响关系,建立了三维非线性动力学模型,利用Routh-Hurwitz判别准则和稳定性判别法给出了模型平衡点的稳定性条件,确定了研究生的最优招生规模。
简介:《微积分与概率统计—生命动力学的建模》(ModelingtheDynamicsofLife-CalculusandProbabilityforLifeScientists)一书的作者是盐湖城犹他大学数学系和生物系的教授FrederickR.Adler。CengageLearning下属的Brooks/Cole出版社于1998年出版了本书的第一版,2005年出版了第二版。北京理工大学的叶其孝教授等翻译了本书的第二版,中译本已于2011年由高等教育出版社出版。作者1984年毕业于哈佛大学(Harvard-RadcliffeCollege),获得学士学位,专业是数学。1987至1991
简介:考虑由磁流体力学方程组控制的二维不可压缩流体的初边值问题,在边界光滑的有界区域中,当(u0,B0)∈((Wm,p(Ω))2×Wm,p(Ω))时,利用Galerkin方法和先验估计,得到了相应的初边值问题存在唯一的弱解(u(.,t),B(.,t))∈((Wm,,(Ω))×Wm,p(Ω)),并证明了弱解对初值(U0,B0)具有连续依赖性.