简介:Inthispaper,theStěckin-MarchaudineoualitvforLupas-Kantorovichprobabilistictypeoperatorisestablished.Andtheinvetsetheoretnofthisapproximationprocessisalsoobtained.
简介:Thispaperpresentsaclassofr-point(r+1)st-orderA-stableone-blockmethodswithdampingattheinfinitepoint(DIAOBr,r+1).Undertheconditionsofthesameorder,A-stabili-ty,operationcount(ateachiterativestep)andstoragespacearethesameasthemethodsin[19],themethodsinthepaperimprovethestabilityinaneighborhoodattheinfinitepoint.And,byus-ingtheOOPImethod[20],itpossessesmuchfasterrateofconvergenceforsolvingsystemsofnon-linearequationsproducedbytheDIAOBr,r+1.
简介:针对具有层次或聚类数据的多水平模型能准确地反映变量间基于层次框架下的关系,并给出不同层次数据的差异性估计及跨级相关估计,为具有层次结构数据的统计建模提供了重要的研究工具,在社会学、心理学、生物医学及经济学领域具有广泛的应用价值。本文简要介绍常用的多水平线性模型和多水平Logistic模型的构建过程,重点介绍其在经济领域中的应用。同时对多水平模型的估计理论、应用软件以及发展展望进行了讨论。
简介:讨论自反Banach空间中的原——对偶锥线性优化问题的目标函数水平集的几何性质.在自反Banach空间中,证明了原目标函数水平集的最大模与对偶目标函数水平集的最大内切球半径几乎是成反比例的.