简介:或者方向性含蓄(ADI)计划通常在3D深度移植被使用。它切开3D沿着英文报纸之单行标题和嵌入的方向的方形根的操作员或者。在这糊,基于数据线,四方法的切开计划和他们的切开的错误为的理想有限差别(FD)方法和混合方法被调查。四方法的切开的计划的wavefieldextrapolation在一根数据线上被完成并且无条件地是稳定的。切开错误的数字分析证明双向FD迁居有可见数字各向异性的错误,和移植更不有的那四方法的FD比双向FD移植切开错误。为混合方法,在双向计划和四方法的计划之间的数字各向异性的错误的差别在更低的侧面的速度变化的情况中是小的。在这篇论文介绍的计划能在栈以后的3D或prestack深度移植被使用。3D深度移植的二数字计算被完成。一个人是四方法的FDand混合3D为推动回答的栈以后的深度移植,哪个各向异性的错误能在经常、可变的速度变化的情况中有效地被消除的表演。Theother是为有切开计划的two-wayhybrid的SEG/EAEG基准模型的3D射击侧面prestack深度迁居,它介绍好成像结果。基于射击数字传递接口(MPI)计划的消息被采用。
简介:在这篇论文,我们提供统一的分区的理论分析有限元素方法(PUFEM),它属于网孔的家庭免费方法。平常的错误分析仅仅显示出错误估计的顺序到与本地近似一样。Usingstandard线性有限元素底作为本地近似空格作为统一和多项式的分区工作,在1-d情况中,我们为错误估计比本地近似高具有一份订单的PUFEMinterpolants.Our分析表演导出最佳的顺序错误估计。Theinterpolation错误估计为椭圆形的边界价值问题的PUFEM答案产出最佳的错误估计。
简介:Heattransportatthemicroscaleisofvitalimportanceinmicrotechnologyapplications.Theheattransportequationisdifferentfromthetraditionalheattransportequationsinceasecondorderderivativeoftemperaturewithrespecttotimeandathird-ordermixedderivativeoftemperaturewithrespecttospaceandtimeareintroduced.Inthisstudy,wedevelopahybridfiniteelement-finitedifference(FE-FD)schemewithtwolevelsintimeforthethreedimensionalheattransportequationinacylindricalthinfilmwithsubmicroscalethickness.Itisshownthattheschemeisunconditionallystable.Theschemeisthenemployedtoobtainthetemperatureriseinasub-microscalecylindricalgoldfilm.Themethodcanbeappliedtoobtainthetemperatureriseinanythinfilmswithsub-microscalethickness,wherethegeometryintheplanardirectionisarbitrary.
简介:这份报纸关于一个参数依赖者接口地点为敏感的数字近似涉及精确、有效的计算算法的构造。在一根Euler-Bernoulli横梁上关于压电的致动器放置由敏感分析激发了,这个工作为兴趣的参数决定接口的地点的接口问题说明与敏感方程明确的表达有关的关键概念。第四个顺序模型问题被考虑的A,和为敏感计算的一个homogenization过程用标准有限元素方法被构造。数字结果证明敏感接口条件的合适的明确的表达和近似对获得会聚的数字敏感近似批评。第二命令椭圆形的接口模型问题也被提及,并且homogenization过程为这个模型简短被构画出。[从作者抽象]
简介:AfiniteelementmethodforthesolutionofOseenequationinexteriordomainisproposed.Inthismethod,acircularartificialboundaryisintroducedtomakethecomputationaldomainfinite.Then,theexactrelationbetweenthenormalstressandtheprescribedvelocityfieldontheartificialboundarycanbeobtainedanalytically.Thisrelationcanserveasanboundaryconditionfortheboundaryvalueproblemdefinedonthefinitedomainboundedbytheartificialboundary.Numericalexperimentispresentedtodemonstratetheperformanceofthemethod.
简介:Inthispaper,weinvestigatethecouplingofnaturalboundaryelementandfiniteelementmethodsofexteriorinitialboundaryvalueproblemsforhyperbolicequations.Thegoverningequationisfirstdiscretizedintime,leadingtoatime-stepscheme,whereanexteriorellipticproblemhastobesolvedineachtimestep.Second,acircularartificialboundaryFRconsistingofacircleofradiusRisintroduced,theoriginalprobleminanunboundeddomainistransformedintothenonlocalboundaryvalueprobleminaboundedsubdomain.AndthenaturalintegralequationandthePoissonintegralformulaareobtainedintheinfinitedomainΩ2outsidecircleofradiusR.Thecoupledvariationalformulationisgiven.Onlythefunctionitself,notitsnormalderivativeatartificialboundaryΓR,appearsinthevariationalequation,sothattheunknownnumbersarereducedandtheboundaryelementstiffnessmatrixhasafewdifferentelements.Suchacoupledmethodissuperiortotheonebasedondirectboundaryelementmethod.Thispaperdiscussesfiniteelementdiscretizationforvariationalproblemanditscorrespondingnumericaltechnique,andtheconvergenceforthenumericalsolutions.Finally,thenumericalexampleispresentedtoillustratefeasibilityandefficiencyofthismethod.
简介:Inthispaperwedeveloptwoconformingfiniteelementmethodsforafourthorderbi-waveequationarisingasasimplifiedGinzburg-Landau-typemodelford-wavesuperconductorsinabsenceofappliedmagneticfield.UnlikethebiharmonicoperatorA2,thebi-waveoperator□~2isnotanellipticoperator,sotheenergyspaceforthebi-waveequationismuchlargerthantheenergyspaceforthebiharmonicequation.Thisthenmakesitpossibletoconstructloworderconformingfiniteelementsforthebi-waveequation.However,theexistenceandconstructionofsuchfiniteelementsstronglydependsonthemesh.Inthepaper,wefirstcharacterizemeshconditionswhichallowandnotallowconstructionofloworderconformingfiniteelementsforapproximatingthebi-waveequation.Wethenconstructacubicandaquarticconformingfiniteelement.Itisprovedthatbothelementshavethedesiredapproximationproperties,andgiveoptimalordererrorestimatesintheenergynorm,suboptimal(andoptimalinsomecases)ordererrorestimatesintheH~1andL~2norm.Finally,numericalexperimentsarepresentedtoguagetheefficiencyoftheproposedfiniteelementmethodsandtovalidatethetheoreticalerrorbounds.