简介:基于分销渠道结构建立了三级供应链合作利润博弈模型,运用Stackelberg博弈求解,分析了各方及渠道利润随合作关系系数的变化情况,并对各成本的外部性进行解析。
简介:本文将改进的灰色GM(1,1)模型用于某油田年综合含水率的近期发展趋势研究。在平均相对误差达到最小准则下,研究了模型中的背景值参数A和边值修正项£对模型预测精度的影响。在此基础上,采用线性规划方法估计模型中的参数,基于遗传算法求解最佳背景值参数A和最佳边值修正项ε,以确保在相应的模型检验准则下预测的误差达到最小。结果表明,用改进的灰色GM(1,1)模型预测近期注水油田的综合含水率,预测值与实际值相对误差很小,预测精度很高,可以得到非常满意的结果。进一步的研究发现,改进的灰色GM(1,1)模型虽然近期预测精度很高,但研究长期的发展趋势是行不通的,为此又研究探讨了长期发展趋势模型。
简介:为解决一次性n人囚徒困境中局中人如何走出困境的问题,引进了背叛惩罚函数及其严厉度和参与人的背叛愿意度等概念,并用数学论证法证明了如下结果:(1)参与人的背叛愿意度都不超过1。(2)背叛愿意度越大,这个参与人越愿意背叛;(3)背叛愿意度为0零时,这个参与人是否背叛其赢得一样;(4)当背叛愿意度取负数时,其绝对值越大,参与人的合作积极性越大。得到博弈结果的判定法:(1)计算各参与人的背叛愿意度。(2)若至少有一个参与人愿意背叛,则全体参与人都背叛。(3)若全体参与人都愿意合作,则合作成功。例子表明,本结果在理论上可有效地解决中局中人如何走出困境和在给定惩罚机制下博弈结果的预测问题。
简介:参考文献中对Lemke-Howson算法给出了相似于线性规划中的单纯形解法。本文用例指出了该解法中出现循环的情况,导致有解求不出。
简介:设P(G,λ)是图的色多项式。如果对任意使P(G,λ)=P(H,λ)的图H都与G同构.则称图G是色唯一图.这里通过比较t+1色类的色划分数目,讨论了由Koh和Teo在文献[1]中提出的问题(若│ni-nj│≤2.当min(n1,n2,…,nt)充分大时,完全t部图K(n1,n2,…,nt)是否是色唯一图?)。改进了文献[5]中的结果。证明了若∑1≤i≤tai^2=T.min{n+a1,n+a2,….nt+at,n-1}≥(T+1)/2,则K(n+a1.n+a2,….n+a,)是色唯一图(其中ai是实数,n+ai是正整数)。从而证明了若│ni-nj│≤k(i.j=1,2.…,t).min{n1.n2,…,nt}≥tk^2/8+1.则K(n1,n2,…nt)是色唯一图。