简介:由条带和流向涡的循环再生构成的近壁自维持过程(self-sustainingprocess,SSP)是壁湍流产生和维持的重要机制.文章通过对最小槽道的直接数值模拟(directnumericalsimulation,DNS)获得近壁自维持过程的流场数据,采用正规正交分解法(properorthogonaldecomposition,POD)对该数据进行分析,获得了不同流向和展向尺度的特征模态,通过将Navier—Stokes方程在这些模态上进行投影,得到近壁自维持过程的降阶模型,并采用DNS数据对降阶模型的预测能力进行了评价.该模型被初步应用于大涡模拟近壁模型的构造.
简介:针对SAR图像匹配及定位需要耗用不等的计算时间而造成的量测不等间隔输出和量测信息滞后问题,提出一种新的SAR时延补偿算法。该算法在标准卡尔曼滤波(KF)基础上,当SAR有量测信息生成时,根据多模型方法进行量测预测,利用预测值修正SINS状态;而SAR无量测信息输出时,通过插值方法生成量测信息来改善系统滤波精度。仿真结果表明,采用基于多模型量测预测的KF算法可以将位置误差由45m减小到10m以内,航向角稳态误差值小于5.8";而在此基础上叠加插值预测算法可以将位置误差进一步控制在6m以内,航向角稳态误差小于4.7",证明了本文提出的算法能够有效补偿SAR的随机时延并提高组合导航系统的解算精度。