简介:在视频编码中,DCT系数分布模型是率失真理论模型的基础,视频量化一般可分别为硬判决量化(HDQ)以及软判决量化(SDQ),SDQ算法能实现最优编码性能,但其中维特比算法会导致严重的系数间串行处理依赖.比较而言,基于死区(deadzone)的HDQ算法率失真性能略有损失,但是不考虑系数间的相关性.提出了一种基于分段逼近TCM模型(TransparentCompositeModel)的自适应硬判决量化算法,采用更精确的DCT分布估计模型,估算不同频率分量DCT系数的分布参数.根据模型参数及DCT系数分布参数,优化构造自适应的死区偏移量模型.实验表明,相对于固定偏移量HDQ算法,其编码性能非常接近于SDQ算法.
简介:短期光伏发电功率预测对维护电网安全稳定和协调资源利用具有重要意义,针对现有的神经网络法、小波分析法等单一预测模型预测精度提升有限的问题,引入集成学习的思想和方法,提出一种基于Stacking算法改进支持向量机(SVM)的短期光伏发电预测方法.该方法先使用多个不同的初级SVM对预测样本进行一次预测得到多个预测输出;然后对训练集进行聚类,使用与预测样本同类别的训练样本训练次级SVM;最后使用次级SVM对多个预测输出进行结合得到最终预测结果.经光伏发电系统的实际运行数据实验,结果表明本文提出的方法相较于单一预测模型精度有了明显提升.
简介:为了深入研究扫描近场光学显微镜(Scanningnear-fieldopticalmicroscope,SNOM)光纤探针导光特性,我们利用VirtualLabFusion光学软件,仿真研究了光纤探针内部的光场分布.结果显示,光纤探针内部的光场分布呈固定的花样;中轴线光场具有峰值结构,其最大值位于探针出口前120nm处;这个最大峰值随着光纤外层铝层厚度的增加呈现先减小后增加,最后趋于稳定的变化,随着光源偏振态的变化呈现正弦的分布.
简介:LDA主题模型是文本挖掘领域的重要算法,同时在推荐系统当中也有不错的表现.通过LDA主题模型挖掘用户感兴趣的主题,是目前最常用的用户兴趣主题挖掘方法之一.为了提高LDA主题模型应用在推荐系统时的推荐质量,我们提出了一种基于负样本进行学习的方法negLDA.通过创造出负样本来学习用户对物品的负面预测评分,同时结合正样本学习得到的正面预测评分,从正反两个方面进行综合评测,从而更加精确地衡量出用户对物品的预测评分.通过在MoviesLens-100k、MovieLens-1M、FilmTrust这三个数据集上的实验,表明所提出的算法在精确率、召回率、AUC三个指标上相比传统算法均有一定改进.