简介:针对单一特征步态识别率低的问题,提出一种将步态能量图(GaitEnergyImage,GEI)中动态部分和Gabor小波特征融合的步态识别算法.首先,通过运动目标检测及二值化和形态学处理等预处理操作得到步态轮廓图,再进一步从步态轮廓图计算得到步态能量图,并从中分割出动态部分.然后,利用Gabor小波从步态能量图的动态部分中提取不同角度的信息,将两步态特征融合在一起,对融合后得到的特征向量用改进的KPCA方法进行降维.最后,将降维后的融合特征向量输入到基于多分类的支持向量机(SupportVectorMachine,SVM)中,从而完成步态的分类和识别.经过在中国科学院自动化研究所CASIA步态数据库上进行实验,取得了很好的识别效果,实验结果表明,与单一特征的步态识别方法相比,融合后算法的识别率提高了约10%.
简介:道路目标检测在智慧城市建设中扮演着重要角色,而Faster-RCNN是目前主流的目标检测网络结构算法.本文在Faster-RCNN卷积神经网络结构基础上增加了特征金字塔网络层,并采用关注损失函数替代了原有的交叉熵损失函数.其中增加的特征金字塔特征融合层可以提取到检测图片中更具鲁棒性和一般性的前背景特征,而通过关注损失函数则能起到缓解检测图片中的正负样本不均的情况.最后,在公开数据集KITTI上实验证实,改进的目标检测算法能实现提高原有的Faster-RCNN目标检测准确率.
简介:Inductivelycoupledplasmaatomicemissionspectroscopy(ICP-AES),pioneeredbyVAFasselandSGreenfieldwiththeinspirationfromReed,isoneofthemostexcitingdevelopmentsinanalyticalinstrumentationsince1960’s.Itcandetermineabout70elementsontheperiodictablewithbetterprecisionandequalorbettersensitivitythanthatobtainedwithflameatomicabsorptionspectrometry(FAAS).Inaddition,certain"difficult"elementsforFAAS,suchasAl,B,C,P,SandTi,etc.,canbeeasilydeterminedbyICP.TheICPisnotonlyaveryusefulexcitatiomsourceforAES,butalsoaveryusefulsourceforatomizationinatomicfluorescencespectrometry(AFS)andforionizationinatomicmassspectrometry(MS).Thislecturedeals
简介:本文提出了一种以十六烷基三甲基溴化铵(CTMAB)为增敏剂的测定痕量抗坏血酸的光度分析方法。吸收波长为664nm,抗坏血酸用量在0—10μg/mL范围内符合朗伯一比尔定律,线性方程为△A=2.006C+0.0082,检出限量为4.2×10^-9g/25mL。本法有灵敏度高,抗干扰能力强,操作简便等优点,用于Vc药片中抗坏血酸测定,获得满意结果。