学科分类
/ 1
20 个结果
  • 简介:首先弹性矩形薄板的动力学方程表示成为Hamilton正则方程,然后采用辛几何方法对全状态相变量进行分离变量,并利用得到的共扼辛正交归一关系,求出边固支弹性矩形薄板的固有频率和振型的解析解表达式.由于在求解过程中不需要事先人为的选取挠度函数,而是从弹性矩形薄板的动力学基本方程出发,直接利用数学的方法求出可以满足边固支边界条件下薄板的固有频率和振型的解析解表达式,使得问题的求解更加理论化和合理化.此外,还给出了计算实例来验证本文所采用的方法以及所推导出公式的正确.

  • 标签: 弹性矩形薄板 四边固支 自由振动 HAMILTON正则方程 固支边界条件 固有频率
  • 简介:应用混和控制(HybridControl)中的切换系统(SwitchedSystem)的方法,分别对汽车轮转向系统的高速态与低速态两个子系统以及由高速态向低速态变化的切换系统进行了最优控制设计.仿真结果表明,Hybrid控制实现了轮转向系统(4WS)的低速灵活性与高速稳定性,具有良好的控制效果.

  • 标签: 四轮转向系统 混和控制 切换系统 鲁棒控制
  • 简介:提出了一个新的维自治类新混沌系统.首先在整数阶下分析了该系统的基本动力学特性.并利用数值仿真、功率谱分析了当参数固定时,分数阶新混沌系统随微分算子阶数变化时的动力学特性.研究表明:当微分算子阶数为0.85时,分数阶新系统随参数变化经短暂混沌和边界转折点分叉而进入混沌.针对一类结构部分未知分数阶混沌系统,基于Chebyshev正交函数神经网络,稳定性理论[14]和分数阶PI滑模面构造方法设计了一种新型的含有补偿器的自适应非线性观测器,实现了分数阶新混沌系统的投影同步.数值仿真验证了设计方法的有效.

  • 标签: 分数阶 动力学特性 投影同步 Chebyshev正交多项式 分数阶滑模面 补偿器
  • 简介:研究了最新提出的超混沌吕系统的最优同步问题.利用哈密顿-雅可比-贝尔曼方程,对具有不确定参数的超混沌吕系统设计了最优同步的方案,分别得到了无限时间区间和有限时间区间上的最优控制器和参数控制律.数值仿真验证了理论分析的正确

  • 标签: 超混沌吕系统 哈密顿-雅可比-贝尔曼方程 Riccatii方程 最优控制
  • 简介:基于日本东京工艺大学风洞试验数据,针对低矮坡房屋展开研究,验证了RNG模型对坡低矮建筑表面风压研究的可靠.利用此模型深度研究檐口外伸长度与出挑高度对坡低矮屋面表面风压的影响规律.结果表明:檐口的长度及出挑高度对屋面风压影响明显,当檐口外伸长度不变,随檐口竖向高度增加,迎风面风吸力随之增大,当檐口竖向高度不变,高度为0.5m、1.0m时,随着檐口外伸长度的增加,迎风面负风压减小,檐口外伸长度为1.5m,竖向高度为1.0m为最有利于房屋表面抗风设计,结论可为台风多发地区低矮民居设计提供建议.

  • 标签: 计算流体动力学 四坡低矮房屋 数值模拟 檐口 屋面风压
  • 简介:基于经典的Magnus级数方法提出了一个简单有效的阶近似积分格式,用于求解一般非线性动力学系统.它是一种几何积分方法,能保持精确解的许多定性性质,并且该方法只包含二个或三个指数矩阵的乘积,避免了通常的Magnus级数方法涉及的复杂的交换子运算.数值算例显示该方法是有效的。

  • 标签: 非线性动力学方程 几何积分 Magnus级数方法 近似解 保群性质
  • 简介:研究了一类参数激励和外激励联合作用下边简支薄板在1:1内共振下的周期解分叉.首先,根据vonKarman方程推导出边简支薄板的运动控制方程,利用Galerkin方法得到参数激励和外激励联合作用下的两个自由度的运动方程.然后,通过引入周期变换和相应的Poincar6映射推广了次谐Melnikov方法.最后,对系统进行数值模拟验证了理论的正确

  • 标签: 周期解 次谐Melnikov函数 周期变换 薄板
  • 简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐式有限差分格式以及微分的阶中心差分格式,将两者相结合,得到FPK方程的阶中心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.

  • 标签: 非线性系统 FPK方程 有限差分法 可朗克-尼考尔逊隐式差分格式
  • 简介:运用Bell多项式定理研究了一个(2+1)维AKNS方程的可积,得到双线性方程、Backlund变换以及运用Backlund变换求得其孤子解,最后运用Bell多项式得出Lax对.

  • 标签: BELL多项式 BACKLUND变换 孤子解
  • 简介:浦肯野神经元是小脑皮层唯一的输出神经元,其传入纤维主要包括来自橄榄核的盘状纤维和来自皮层颗粒神经元的平行纤维.基于与实际神经系统十分相似浦肯野神经元回路模型,本文研究了回路中三种神经元(浦肯野神经元,颗粒神经元,盘状纤维)的相位响应曲线(PRC)并结合它们各自的f-I曲线对来区分三种神经元的兴奋;进而对不同类型的神经元之间的同步进行分析,着重考察了不同神经元之间突触的电导系数与浦肯野神经元树突上的CaP电导系数的影响等,分析结果显示神经元之间同步对于它们信息传递起着重要作用.

  • 标签: 浦肯野神经元 相位响应曲线 同步性 突触电导系数 CaP电导系数
  • 简介:为了满足空间探测任务的要求,需采用轻质的伸杆机构支撑各类探测载荷远离卫星本体以避免平台剩磁对空间测量信息的干扰,而挠伸杆的弹性振动会耦合影响到卫星本体,从而降低卫星本体的姿态控制精度.考虑到挠附件振动的复杂及其对航天器本体的耦合影响,采用最优指令整形抑制挠伸杆的低阶模态振动,并在本体控制中设计自适应扰动抑制滤波器进一步抵消挠伸杆的残余振动对本体的干扰作用.仿真结果表明,此复合振动控制方法可显著的提高此小卫星的姿态控制精度.

  • 标签: 挠性伸杆 最优指令整形 自适应扰动抑制滤波器 复合振动控制
  • 简介:基于动力系统的稳定性理论、数值计算分岔图和线性化系统的最大Lyapunov指数,研究了经兴奋化学耦合的快峰神经元的同步动力学.研究表明,随着一些关键参数的改变,耦合神经元能呈现丰富的同步行为,如各种周期的同步和混沌的同步.研究结果对理解神经元系统的同步运动具有指导意义.

  • 标签: 快峰神经元模型 兴奋性化学突触 同步
  • 简介:根据Rumyantsev提出的Poincaré—Chetaev变量下的广义Routh方程.用无限小变换的方法研究它的对称与守恒量,得到守恒量存在的条件和形式.该结果比以往的Poincaré—Chetaev方程的相关结论更一般.最后.举例说明结果的应用。

  • 标签: Poincaré-Chetaev变量 广义Routh方程 对称性 守恒量
  • 简介:利用CMAC神经网络与PID控制算法,提出了一种针对飞行器挠结构振动的混合控制方法.首先在给出系统动力学方程的基础上,利用CMAC神经网络的具体特点,给出了神经网络算法;进而将PID控制算法引入控制系统,形成了一种混合控制方法,该方法具有CMAC神经网络与PID控制算法两者的优点.最后针对复杂的飞行器挠结构振动问题进行了实例仿真,说明了算法的有效.

  • 标签: 挠性结构 控制研究 CMAC神经网络 PID控制算法 混合控制方法 神经网络算法
  • 简介:建立随机风作用下高速列车动力学参数的可靠优化设计方法.首先考虑自然风的脉动特性,采用Cooper理论和谐波叠加法模拟随车移动点的脉动风速,给出随机风作用下高速列车非定常气动载荷的计算方法.然后建立高速列车车辆系统动力学模型,计算高速列车的运行安全,并基于可靠性理论,给出随机风作用下高速列车失效概率的计算方法.在此基础上,以高速列车动力学参数为优化设计变量,以失效概率和轮轴横向力为优化目标,采用多目标遗传算法NSGA—II进行动力学参数的自动寻优,建立随机风作用下高速列车动力学参数的可靠优化设计模型.经可靠优化计算,高速列车的失效概率由原始的0.4884降低为0.1406,轮轴横向力由原始的45.13kN降低为43.01kN.通过优化高速列车动力学参数可以显著改善随机风作用下高速列车的运行安全

  • 标签: 随机风 可靠性优化 动力学参数 失效概率 多目标遗传算法
  • 简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在判据的正确,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.

  • 标签: 碰撞系统 亚谐运动 POINCARÉ映射 稳定性
  • 简介:根据符号动力系统与真实动力学系统拓扑共轭的特性,本文提出动态标架分割法,把动力学系统的某时间变量序列转化成符号序列;运用Lemple-Ziv复杂度算法计算该符号序列的复杂度值,据此对动力学系统的复杂进行分析,从而可以对动力学系统的性质进行定性地判断,以杜芬振子为例,数值模拟结果表明基于动态标架分割法计算得到的复杂度能够很好地描述系统的复杂,并可定性地判断系统的性质。

  • 标签: 符号时间序列 动态标架分割法 Lemple-Ziv复杂度 动力学系统
  • 简介:峰放电频率适应是神经元在信息处理过程中重要的动力学特性之一.当神经系统受到外电场作用时,会对其动力学行为以及神经电信息的产生、传导产生影响.我们基于Leakyintegrate-and-fire(LIF)神经元模型,建立了外电场作用下改进的LIF神经元模型.采用随时间演化的膜电位曲线和峰放电频率曲线,以及随外电场变化的起始峰放电频率曲线和稳态峰放电频率曲线,研究不同强度、频率外电场作用下改进的LIF模型的适应变化.此外,还利用相邻峰峰间期(ISI)之间的相关进一步阐明外电场对神经元适应的影响.

  • 标签: 峰放电频率适应性 外电场 Leaky integrate—and—fire模型 ISI 相关性
  • 简介:利用参数互异的Fitzhugh—Nagumo神经元构建了含耦合时滞的无标度神经元网络模型,通过数值模拟的方法,提出研究参数异质和耦合时滞影响下神经元网络的共振动力学.结果发现,当耦合项中不含时滞时,适中的参数异质性能够使得神经元网络对外界弱周期信号的响应达到最优,即适中的参数异质性能够诱导神经元网络的共振响应,而且异质诱导共振对耦合强度具有鲁棒.更重要的是,耦合时滞对参数异质作用下神经元网络的共振特性也有着显著影响.当时滞约为信号周期的整数倍时,神经元网络能够周期性地出现共振现象,即适当的耦合时滞能够诱导神经元网络的多重共振,而且这种现象在异质参数的适当范围内都能明显出现.

  • 标签: 共振 异质性 时滞 神经元网络 谱放大因子