学科分类
/ 2
30 个结果
  • 简介:失重作用可能在空间中构造理想的球形滴,它在空间流体科学、空间材料合成等中均有应用.在轨操纵中共振可能引起滴的变形而影响实验质量,了解滴晃动特性对空间实验的设计和避免与支撑结构的共振都有帮助.用瑞利-里兹研究了失重滴的自由晃动问题,给出了滴自由晃动的频率和模态函数.可利用表面上的动力学条件研究自由滴的晃动特性,但由于耦合系统复杂,往往用能量加以研究.该方法作为一种能量,可为进一步研究失重环境中的滴和支撑结构的耦合振动问题提供可行的途径.

  • 标签: 瑞利-里兹法 晃动 自由液滴
  • 简介:用等效力学模型研究了多腔体充晃动问题.在单腔体等效模型的基础上给出了多腔体充液体的等效模型,并分析了液体分散到多个腔体后对飞行器带来的影响.结果表明,从频带的改善到作用力的减少等方面,一般情况下多个腔体的力学特性更有利于飞行器的动力学与控制设计.

  • 标签: 多腔充液 晃动 等效力学模型
  • 简介:应用数学与力学经常使用小参数摄动近似.在物理与力学中有大量保守体系的分析.保守体系的特点是保辛.本文指出小参数摄动保辛的问题应予考虑.位移摄动是保辛的,而辛矩阵的加法摄动则未能保辛.数值例题给出了对比.

  • 标签: 小参数摄动法 应用数学 位移法 辛矩阵 力学 近似
  • 简介:建立了充航天器动力学模型并考虑液体燃料粘性边界层效应.推导了采用脉冲推进实现航天器姿态转换的等效反馈控制力矩增益系数.确定了航天器穿越分支线完成预期姿态定向的脉冲推进控制方案.由于存在能量耗散,航天器完成姿态再定向机动后将绕主轴做正向或负向自旋,航天器相对于角动量随体坐标系的最终定向不能预先确定.研究结果表明,采取脉冲推进控制策略所完成的姿态转换机动可以使航天器实现最终所期望的姿态定向.

  • 标签: 充液航天器 全局姿态机动 再定向 脉冲推进
  • 简介:针对我国某一型号大型卫星液体燃料Cassini贮箱(腰为圆柱,两底为半球),应用有限元方法研究了微重环境下液体的小幅晃动问题和横向受迫晃动问题,采用Galerkin方法得到了系统的有限元离散方程;得到了晃动固有频率和等效力学模型参数.针对周期脉冲激励,推导了液体作用于贮箱壁的晃动力和晃动力矩计算公式并给出了数值计算结果和分析结论.

  • 标签: 微重力 液体晃动 等效力学模型 有限元 周期脉冲激励
  • 简介:应用谐波—能量平衡求解了强非线性单摆方程,谐波-能量平衡与经典的摄动和谐波平衡不同,不是把微分方程和初始条件分离处理;而是把微分方程和初始条件同时处理.用谐波平衡,将描述动力系统的二阶常微分方程,化为以角频率、振幅为变量的非线性代数方程组,考虑能量平衡,构成角频率、振幅为变量的封闭方程组求得解析解.谐波-能量平衡将谐波平衡与能量平衡相结合,克服了二者的缺点吸取了二者的优点.实例表明,谐波-能量平衡法方法简单,取较少谐波就可以达到较高的精度.

  • 标签: 强非线性 单摆 谐波—能量平衡法
  • 简介:讨论了充航天器大角度姿态机动自适应非线性动态逆控制设计.推导了航天器一液体晃动耦合系统动力学方程.采用单摆等效力学模型对液体燃料晃动进行动力学建模.由于充航天器控制系统的强耦合非线性,故采用神经网络构造系统的自适应非线性动态逆控制器.通过实际算例对该控制器的跟综性能进行了测试,结果证明该自适应非线性动态逆控制器在包含液体晃动的情况下仍具有很好的跟综性能.

  • 标签: 动态逆 神经网络 自适应
  • 简介:对于弹性容器与不可压无黏液体之间的线性耦合问题,已有缩聚对称形式的固耦合系统有限元方程.利用比拟算法获得固耦合系统的系统矩阵,将问题转化为通用有限元程序可以解决的问题.以包含贮箱的火箭模型为例,求解火箭的模态特性,其中包括由液体晃动所引起的火箭振动模态.结果表明此类模态与重力加速度有关,频率随重力加速度的增大而增大.

  • 标签: 液固耦合 贮箱 有限元方法 比拟
  • 简介:定义对称轮轨系统对称性分岔的概念,由数值积分得到系统的时间响应并建立对称轮轨系统的离散动态Poincare映射截面及其对称截面,提出“合成分岔图”的构造方法,应用该方法对一两轴转向架系统运行与理想平直轨道上的对称/不对称分岔行为和混沌运动进行分析.在研究速度范围内,发现系统存在大量的对称运动形式,也存在很多的不对称运动形式,系统的对称性刚开始是通过不可捉摸突变而破坏的.

  • 标签: 轮轨系统 “合成分岔图” 对称/不对称 分岔
  • 简介:正交模型-正交模态(CMCM)是一种参数修改的新方法,它具有不依赖于灵敏度分析、不需要进行迭代的特点.但是在有限元存在整体建模误差时,该方法会出现无法完成修正计算的情况,本文针对此问题进行了改进.改进后的方法可以既可以处理存在局部建模误差的情况,也可以处理存在整体建模误差的情况.本文通过梁式结构的数值算例,比较了原修正方法(CMCM)、改进后的修正方法(ICMCM)以及商业软件模型修正FEMtools的修正效果.结果表明:改进的正交模型-正交模态方法可以使分析频率更好逼近实验值,物理参数的修改也更加准确.

  • 标签: 模型修正 有限元 模态
  • 简介:电磁场节点有限元因未强加电场散度为零的条件而一直受到伪解出现的困扰.本文针对电磁共振腔问题,给出在频域的Maxwell方程表达式.通过引入Lorentz条件,推导出电磁共振腔二类变量和三类变量的变分原理,由此提出了新的电磁共振腔节点有限元,避免了伪解的出现.最后用子空间叠代求解了共振腔的本征值问题.数值算例表明本文方法是有效可行的.

  • 标签: 电磁波 有限元 共振腔 本征值 子空间叠代法
  • 简介:结合Liouville—Green变换,改进了求解变系数二阶线性齐次方程的渐近.并采用改进后的渐近研究了负载钢丝绳的固有振动问题,推导出了其固有振动的近似频率特征方程.实例计算表明,改进后的渐近不但比Bessel函数计算简便,而且计算精度也非常高.

  • 标签: 渐近法 负载 频率
  • 简介:描述了振动声系统建模技术的基本概念.根据域分解的连续性条件,讨论了界面的压力和速度连续以及阻抗连续,应用加权余量推导了两者的耦合模型.并用LMS/SYSNOISERev5.5进行了有限元数值模拟,计算结果与有限元结果符合得较好.通过比较两种连续性条件,发现前者更适合较小的计算模型而后者更适合较大的计算模型.最后对域分解提出了几个简单优化原则.

  • 标签: 声学 多域 域分解 Trefftz法
  • 简介:研究因结构激励导致的不规则形状的车厢封闭空腔声场.利用改进Trefftz方法,对复杂形状的车厢空腔进行声学系统简化波函数建模.结合声固耦合关系,利用加权残数处理边界条件,得出该声压稳态响应的波函数级数展开式,并给出了中低频噪声场的分析预测解.结合有源声控制理论,建立了复杂封闭腔体局部区域有源消声模型,并利用Matlab工具进行了数值仿真分析.仿真结果表明降噪效果良好,也证明了此方法的可行性.

  • 标签: Trefftz 封闭空间 主动控制 声固耦合
  • 简介:引入离散奇异内积分析材料非线性圆柱的动力响应.离散奇异内积方法是一种结合全局方法的高精度和局域方法的稳定性的计算方法.数值分析过程中用离散奇异内积方法离散空间导数,用四阶Runge—Kutta离散时间导数.计算结果表明,离散奇异内积格式的求解结果和LP的求解结果非常吻合.说明离散奇异内积格式非常适合数值分析材料非线性圆柱的动力响应问题,并且是一种具有很高的精度,和可靠性的高效的算法。

  • 标签: 离散奇异内积法 小波分析 动力响应 材料非线性 RUNGE-KUTTA法 动力响应
  • 简介:将广义微分求积(GDQR)用于分析输流曲管的流致振动问题,这是一个新的尝试.基于输流曲管的面内振动微分方程,利用GDQR使曲管系统在空间域上得以离散化,从而获得了输流曲管的动力学方程组.数值算例中,计算得到了输流曲管在几种典型边界条件下的固有频率以及曲管发生失稳的临界流速等,这些计算结果与前人的解析解结果吻合较好.此外,还给出了两端固定输流曲管典型的动力响应行为.研究表明,GDQR极易处理输流曲管这一类动力学模型,精度令人满意,进一步的研究可望推广到输流管道的非线性振动分析中.

  • 标签: QR法 流致振动 GD 广义微分求积法 振动微分方程 动力学方程组
  • 简介:薛定谔方程是量子力学的基本方程,与经典物理中的牛顿运动方程地位相当.本文针对哈密顿量与时间无关的量子系统,应用分离变量研究其量子力学定态解.分别给出了包含克尔型、饱和型以及五次非线性效应的薛定谔方程的定态解,并将所得解析解与数值解进行比较.两者完全吻合.

  • 标签: 非线性薛定谔方程 定态解 解析解
  • 简介:基于车辆-轨道耦合动力学和空气动力学提出了一种快速计算横风下高速列车系统动力学行为的平衡状态方法.首先,忽略轨道不平顺并利用流固耦合联合仿真方法计算横风下高速列车的平衡状态;然后,将平衡状态下的气动力加载到车辆一轨道耦合动力学模型并计算高速列车动力学响应.利用建立的平衡状态疗法,研究了列车在速度为13.8m/s的横风下以350km/h速度运行时的流固耦合动力学行为.比较了平衡状态方法和联合仿真方法两种方法下列车姿态、安全性和舒适性指标的差异,计算结果差别在3.26%以内.研究结果表明:平衡状态方法计算横风下高速列车流固耦合的效率更高.

  • 标签: 车辆动力学 横风 高速列车 流固耦合 平衡状态
  • 简介:主要考虑弯曲变形的细长轴向运动梁,可以作为工程中广泛应用在航天器天线、液体输送管道、汽车驱动带、电梯缆索等的简化机构.对轴向运动柔性梁线性微分方程,采用复模态分析方法导出两端简支和固支边界条件下的固有频率方程;采用Ritz建立轴向运动梁的有限单元模型.基于该模型在多种边界条件下进行梁的横向振动分析,并开展定点激励下激励功率谱的辨识.仿真结果表明,与传统的Galerkin截断方法相比.有限元方法能够克服分析方法的建模困难,对复杂边界梁进行有效的分析,对激励的功率谱能够有效辨识.

  • 标签: 轴向运动梁 复模态 有限元 复杂边界 功率谱辨识
  • 简介:针对俯仰运动贮箱中液体的晃动用变分原理建立了一类新的Lagrange函数,以此为基础可以解析方式来研究俯仰运动贮箱中液体的非线性晃动.首先将速度势函数φ在自由面处作波高函数η的Taylor级数展开,从而导出自由面运动学和动力学边界条件非线性方程组;然后用谐波平衡(HBM)假设其解为各次主导谐波叠加的形式,并代入方程组中得到含有未知系数相应多个代数方程式;最后用Broyden对代数方程组求解.以无挡板开口二维、刚性矩形贮箱为例,研究了液体的大幅晃动,就液体晃动的幅值而言,在一定激励频率范围内,理论计算值与试验结果吻合较好,同时面波高出现明显的零点漂移现象.

  • 标签: 矩形贮箱 非线性晃动 谐波平衡法 LAGRANGE函数 动力学模型 晃动控制方程