简介:基于一个特殊的Painleve-Backlund变换和多线性变量分离方法,分析了(2+1)维非线性广义Borer-Kaup(GBK)系统,求得了该系统具有若干任意函数的变量分离严格解.根据得到的变量分离严格解,并通过选择解中的任意函数,引入恰当的局域函数和多值函数,找到了GBK系统一种新的具有实际物理意义的半包局域相干结构,如海洋表面波,并简要地讨论了这种半包局域相干结构的一些特殊的演化性质.结果表明:这种半包局域相干结构相互作用后,完全保持它们原有的速度、波形和波幅,即它们的演化性质是完全弹性的.
简介:建立了两自由度两点碰撞振动系统的动力学模型,给出了碰撞振动系统产生粘滞的条件,分析了系统存在的粘滞运动,采用打靶法,利用变步长逐次迭代逼近的方法求解系统的不稳定的周期碰撞运动,即Poincare截面上的不动点,通过对两自由度两点碰撞振动系统进行数值模拟显示了系统在一定参数条件下存在周期倍化分叉和Hopf分叉,同时通过数值模拟的方法得到了以两自由度两点碰撞振动系统Poincare截面上的不变圈表示的拟周期响应,并进一步分析了随着分岔参数的变化,两自由度两点碰撞振动系统周期运动经拟周期分叉和周期倍化分叉向混沌的演化路径。
简介:提出了非线性保守系统周期运动的Hermite插值解法.该方法首先将时间转换为周期运动时间,由此系统的微分方程变为适用于Hermite插值的形式.与Qaisi提出的传统幂级数法不同,采用两点Hermite插值函数代替一点幂级数展开,保证了求解的收敛性及精度.使用Hermite插值解法给出了一类非线性振子的近似通解.研究表明,该近似通解不但可用于进一步分析振子的振动特性,且具有较高精度.