学科分类
/ 1
7 个结果
  • 简介:应用谐波—能量平衡法求解了强非线性单摆方程,谐波-能量平衡法与经典的摄动法和谐波平衡法不同,不是把微分方程和初始条件分离处理;而是把微分方程和初始条件同时处理.用谐波平衡,将描述动力系统的二阶常微分方程,化为以角频率、振幅为变量的非线性代数方程组,考虑能量平衡,构成角频率、振幅为变量的封闭方程组求得解析解.谐波-能量平衡法将谐波平衡与能量平衡相结合,克服了二者的缺点吸取了二者的优点.实例表明,谐波-能量平衡法方法简单,取较少谐波就可以达到较高的精度.

  • 标签: 强非线性 单摆 谐波—能量平衡法
  • 简介:本文对移动车辆作用下桥梁系统的振动能量俘获进行了研究.将车辆模型简化为车轮--弹簧--阻尼器--簧上车身质量体系,桥梁简化为对边简支对边自由板模型,压电俘能结构采用粘贴有压电晶体材料的悬臂梁并在其末端附加一质量块.对于这个耦合动力学模型,首先,通过板壳振动理论推导出了移动车辆作用下板的运动微分方程;其次,根据欧拉伯努利梁振动理论和基尔霍夫第一定律得到了以桥梁振动响应作为激励的悬臂梁动力学--压电耦合方程;最后,对耦合运动微分方程进行了求解并对其数值模拟结果进行了分析.结果表明:采用设计的压电俘能结构可以有效地收集桥梁系统的振动能量,而压电装置的位置、压电梁的厚度、集中质量、车辆速度对压电俘能效率都有一定影响.

  • 标签: 振动响应 俘能 压电 桥梁
  • 简介:能量编码原理的基础上,利用哈密尔顿函数得到了大脑皮层内大规模神经元集群在阈下和阈上互相耦合时神经元电位变化的能量函数.根据神经电生理的实验数据得到了高斯白噪声条件下神经元电位活动的膜电位运动方程.研究结果表明:本文得到的膜电位的均值恰是先前已发表的膜电位运动方程的精确解.在这个基础上,还得到了神经元集群编码的哈密尔顿函数随时间的演变过程,即神经元集群随时间的能量演化过程的定量表达式.

  • 标签: 神经元集群 能量编码 哈密尔顿函数 生物学神经网络
  • 简介:提出了一个馈能式主动控制系统的设计方案,首先给出了一种馈能式主动控制的电机作动器的驱动方式,使得作动器能够在三种工作模式下进行功能切换.其次,分析了三种模式的工作时间比与能量平衡之间的关系,给出了能够实现能量平衡的基本条件,并得到了系统达到能量平衡的条件.最后,通过一个馈能式主动控制系统设计的算例验证了方法的可行性.仿真结果表明,该主动控制系统能够有效降低振动激励的干扰,并且能够达到能量平衡,即不需要外部的能量供给.

  • 标签: 能量回馈 主动控制 能量平衡 电机作动器
  • 简介:利用外场瞬态振动时间历程数据获得能量谱包络,借鉴振动台控制理论中随机信号产生原理获得具有包络能量谱幅值特性以及典型外场试验数据相位信息的时域波形,并用振动台波形再现的方式进行产品瞬态振动环境试验;该方法为今后直接使用能量谱控制的瞬态振动振动台试验方法提供技术支撑.

  • 标签: 能量谱 时域波形再现 瞬态振动 快速傅里叶变换 冲击响应谱
  • 简介:研究了地震作用下非线性地基中桩基的3次超谐波共振问题.从地基中抽象出力学模型,考虑地基的非线性因素,运用Hamilton变分原理建立了桩基的非线性控制方程.利用Galerkin方法离散上述方程,基于多尺度摄动法研究了地震作用下非线性地基中的3次超谐波共振问题.以某嵌岩圆形为例,研究了地基土层厚度、剪切波速度及频率比对地震力的影响,数值模拟了非线性地基的3次超谐波共振响应,探讨了地震力、地基弹性及非弹性系数对超谐波幅频响应的影响,最后研究桩基产生3次超谐波共振时的时间历程曲线.结果表明,当地震波频率约等于桩基固有频率的1/3时,容易激发的3次超谐波共振响应;桩基的3次超谐波共振响应随着地震力、非弹性系数的增大而变得更加显著,随着弹性系数的增大而逐渐变小.

  • 标签: 地震力 非线性地基 3次超谐波
  • 简介:研究了在地基波动影响下非线性粘弹性中的混沌运动.假定桩体材料满足Leaderman非线性粘弹性本构关系,得到在轴向载荷作用下满足Winkler条件的地基土波动方程、与地基土耦合振动方程;利用Galerkin方法将非线性积分-微分方程简化,并进行了数值计算,揭示了非线性粘弹性包括混沌运动在内的动力学行为.

  • 标签: 粘弹性桩 波动影响 运动分析 非线性粘弹性本构关系 GALERKIN方法 WINKLER