简介:详细介绍了六种典型的滞后非线性模型,包括:干摩擦理想模型、双线性模型、Davidenkov模型、Boue-Wen模型、迹法模型及Bingham模型。首先说明了这些模型的由来、表达式及原理,然后分析了这些模型的优缺点和应用范围。此外,还对各种典型模型的改进情况和最新的研究进展进行了较详细的综述,最后总结了滞后非线性模型的研究现状及将来的发展趋势。
简介:以灰色预测控制理论为基础,采用现代控制理论中的二次型优化原理,以控制力和响应加权最小为目标函数,设计了两种基于灰色预测理论的转子系统振动主动控制方案--灰色GM(1,1)预测优化控制方案和灰色Verhuslt预测优化控制方案.并将该两种方案分别应用于带电磁阻尼器转子轴承系统的转子振动主动控制中,通过数值仿真验证了两种控制方法的有效性,并对两种方法的控振效果进行了比较.
简介:非线性输出频率响应函数是由Volterra级数发展而来的频域概念,可方便在频域对非线性系统进行分析,它是频率的一维函数.本文主要介绍了利用NARMAX模型以及NOFRF对结构进行损伤检测的方法,并利用实验研究证实了该损伤检测方法的可行性.另外,由于系统非线性特性可用来做结构损伤检测,且具有对系统状态比较敏感的优点,而基于NOFRF的损伤检测方法是利用非线性方法来分析系统的状态,该方法提取出的特征属于非线性特征,所以该损伤检测方法可以用来做结构损伤检测,且具有对系统状态比较敏感的优点.
简介:在Goodwin与Puu的宏观经济思想基础上,得到了一个推广的非线性动力学经济周期系统.首先用数值方法研究了此系统在特定参数条件下的全局分岔行为.然后结合最大Lyapunov指数,详细讨论了系统在分岔过程中动力学特征的转变.通过分析分岔图形发现在某些参数区间内倍周期分岔导致了混沌;在混沌区域内嵌有多个周期窗口;"加速数"值的增加可以促进经济的周期性运动.最后介绍了分岔和混沌分析得到的动力学性质对理解经济波动的应用.
简介:随着MEMS技术工艺的发展,微型结构在工程领域的应用越来越广泛.对于微型结构,经典连续介质力学理论的本构关系中不包含任何特征长度尺度,不能反映结构在微米尺度下的尺寸效应.本文基于VonKarman大变形理论和一阶剪切变形理论,把考虑尺寸效应的应变梯度理论推广至微型Mindlin板的非线性问题.分别计算微结构的应变能,包括宏观变形应变能和微观变形应变能两部分,结合微型Mindlin板结构的动能及外力功,代入Hamilton原理,得到了微型Mindlin板在大变形情况下的非线性动力学方程及边界条件.
简介:电动太阳风帆(简称电动帆)是一种利用太阳风动能冲力飞行的新兴无质损飞行器.针对电动帆传统推力模型中忽略了姿态对推力幅值影响的问题,本文推导得出了一种解析形式的改进推力模型,并与最新的多项式拟合改进推力模型进行了对比.对比结果显示两种改进推力模型数值结果很接近,但本文的解析改进推力模型形式更简单.为了重新评估电动帆在深空探测中的性能,以地球至火星的飞行任务为算例,分别采用传统推力模型和解析改进推力模型进行了电动帆轨迹优化仿真.仿真结果显示,在相同特征加速度情况下,采用改进解析推力模型完成任务所需时间,大于采用传统推力模型所用时间.上述现象的原因在于传统推力模型中忽略了姿态改变对推力加速度大小的影响,并高估了电动帆所能产生的最大推进角.
简介:轮胎作为车辆与路面接触的唯一载体,其力学特性是车辆动力学响应分析和控制的重要基础.目前仿真研究中所使用的轮胎模型多为稳态模型,不能精确地描述轮胎的动态特性.因此,将动态轮胎模型应用于车辆动力学仿真软件中,对于整车动力学仿真和研究具有重要的作用.多体动力学软件Adams中自带的轮胎摩擦模型为静态模型,它将摩擦系数视为一个静态值,而实际轮胎与路面之间的摩擦是动态变化的,应为相对速度和位移的动态函数,所以本文以基于LuGre动态轮胎模型,应用Matlab/Simulink软件构建动态轮胎模块,通过接口与Adams/Car连接,进行整车模型与Simulink轮胎模型的同步联合仿真,实现轮胎与路面动态接触的历程的模拟,提高车辆系统仿真的精度.
简介:有限单元法被广泛的采用来描述柔性体的弹性变形,然而有限元节点坐标数目庞大,将会给动力学方程求解带来巨大的计算负担.如何降低柔性体的自由度,是当前柔性多体系统动力学研究的一个重要命题.本文以中心刚体-柔性梁系统为例,采用Krylov方法和模态方法进行降价.然后分别采用有限元全模型、Krylov降阶模型和模态降阶模型,对中心刚体-柔性梁进行刚-柔耦合动力学仿真.仿真结果表明,与采用模态降阶方法相比,采用Krylov模型降阶方法只需要较低的自由度,就可以得到与采用有限元方法完全一致的结果.说明Krylov模型降阶方法能够有效的用于柔性多体系统的模型降价研究.
简介:研究了改进的Morris—Lecar(ML)神经元模型的放电节律模式和模式转化的峰峰间期(interspikeintervals,ISIs)分岔结构,通过调节模型中的两个重要参数μ和Vk,发现对于固定的μ,改变Vk,神经元呈现出从倍周期级联分岔到加周期分岔的复杂结构,放电模式从静息态转化为周期、混沌簇放电状态;若选取此分岔过程中的某一Vk值,对μ进行调节,呈现出的ISIs分岔结构在很大程度上取决于单个神经元的放电节律模式,且单个神经元处于混沌簇放电时,肛带来的分岔动力学行为较丰富.由于神经元能够通过动作电位对信息进行编码,所以我们推测,研究神经元的放电节律模式和动作电位的ISIs分岔结构能为理解神经信息编码机制提供线索.