简介:为满足实时、高效、高精度的便携式三维测量要求,提出了一种基于十字激光线的三维测量方法。综合线结构光和双目立体视觉两种测量原理的优点,设计了新颖的融合式测量模型,解决了局部线激光数据到全局面数据的转换;创新性的十字激光线结构光模式,相比于传统的一字激光线测量效率提升2倍;提出的基于GPU加速的自适应阈值的激光线提取方法,实现了激光线中心的亚像素精确、实时提取和三维测量;设计的匹配能量法稳定、精确地解决了便携式测量过程中的数据拼接,实现了局部坐标系到全局坐标系的数据统一;最后利用搭建的软硬件平台进行了测量性能参数验证,结果表明满足实时高精度测量应用的需求。
简介:针对单一特征步态识别率低的问题,提出一种将步态能量图(GaitEnergyImage,GEI)中动态部分和Gabor小波特征融合的步态识别算法.首先,通过运动目标检测及二值化和形态学处理等预处理操作得到步态轮廓图,再进一步从步态轮廓图计算得到步态能量图,并从中分割出动态部分.然后,利用Gabor小波从步态能量图的动态部分中提取不同角度的信息,将两步态特征融合在一起,对融合后得到的特征向量用改进的KPCA方法进行降维.最后,将降维后的融合特征向量输入到基于多分类的支持向量机(SupportVectorMachine,SVM)中,从而完成步态的分类和识别.经过在中国科学院自动化研究所CASIA步态数据库上进行实验,取得了很好的识别效果,实验结果表明,与单一特征的步态识别方法相比,融合后算法的识别率提高了约10%.
简介:道路目标检测在智慧城市建设中扮演着重要角色,而Faster-RCNN是目前主流的目标检测网络结构算法.本文在Faster-RCNN卷积神经网络结构基础上增加了特征金字塔网络层,并采用关注损失函数替代了原有的交叉熵损失函数.其中增加的特征金字塔特征融合层可以提取到检测图片中更具鲁棒性和一般性的前背景特征,而通过关注损失函数则能起到缓解检测图片中的正负样本不均的情况.最后,在公开数据集KITTI上实验证实,改进的目标检测算法能实现提高原有的Faster-RCNN目标检测准确率.
简介:为了进一步提高汽车控制系统的动态性能和鲁棒稳定性,从理论上分析并揭示了状态反馈控制中特征向量矩阵的条件数对线性连续定常系统的响应及反馈矩阵Frobenius范数的重要影响。进一步提出以减小特征向量矩阵的条件数为目的来设计状态反馈矩阵。仿真试验结果表明,在相同条件下,特征向量矩阵条件数较小的反馈系统,其暂态过程比较平稳,抗参数摄动的鲁棒性也比较强。这种思想可以应用于具有线性连续定常特性的汽车控制系统中。