简介:为了避免成像物体在核磁共振成像(magneticresonanceimaging,MRI)系统实际操作中的旋转难题,现提出一种基于径向基函数(radialbasisfunction,RBF)神经网络和微分进化(differentialevolution,DE)思想的磁共振电阻抗成像(magneticresonanceelectricalimpedancetomography,MREIT)算法.该算法只利用单方向磁感应强度,首先RBF神经网络对肺部仿真模型可行域电阻值和仿真计算磁场强度与真实电磁场强度之间的不匹配目标函数建立非线性模型,其次用微分进化算法寻找最优解.通过在二维、三维肺部仿真模型的仿真实验研究.结果表明,该算法在允许的误差范围内可以有效地对病变的肺部组织进行阻抗图像重构,统计结果与基于微分进化思想的MREIT算法相比,明显缩短了计算复杂度与计算时间.
简介:在室内定位中,针对移动标签的精确定位过程中所存在的定位精度低、非视距(non-line-of-sight,NLOS)现象与多径传播等问题,提出一种基于超宽带(Ultra-wideband,UWB)的线段近似双曲线定位算法,将二次双曲线方程转换为线性方程,结合到达时间差(Timedifferenceofarrival,TDOA)定位算法与三角形质心定位算法原理,可以实现高精度定位.经MATLAB仿真验证,该算法中的三线段近似双曲线的近似定位算法的平均距离误差是60.74cm,三加四线段近似双曲线的近似定位算法的平均距离误差是31.34cm,五线段近似双曲线的近似定位算法的平均距离误差是14.08cm.与迄今为止公布的文献相比,证明了该算法定位精度较高,在保证定位精度的同时,Chan算法运行一个周期所用时间为13.580s,线段近似双曲线算法运行一个周期所用时间最大为8.985s,算法复杂度大大的下降.
简介:LDA主题模型是文本挖掘领域的重要算法,同时在推荐系统当中也有不错的表现.通过LDA主题模型挖掘用户感兴趣的主题,是目前最常用的用户兴趣主题挖掘方法之一.为了提高LDA主题模型应用在推荐系统时的推荐质量,我们提出了一种基于负样本进行学习的方法negLDA.通过创造出负样本来学习用户对物品的负面预测评分,同时结合正样本学习得到的正面预测评分,从正反两个方面进行综合评测,从而更加精确地衡量出用户对物品的预测评分.通过在MoviesLens-100k、MovieLens-1M、FilmTrust这三个数据集上的实验,表明所提出的算法在精确率、召回率、AUC三个指标上相比传统算法均有一定改进.