简介:考虑二阶常系数线性微分方程的降阶法.首先,写出二阶齐次常系数线性微分方程的特征方程,求出特征方程的两个特征根;然后,利用积分因子乘以微分方程和导数的运算,将二阶常系数线性微分方程化为一阶微分形式;最后,将一阶微分形式两边同时积分,求解一阶线性微分方程,可求得二阶常系数线性微分方程的一个特解或通解.利用降阶法,可以求得微分方程的一个特解或通解.其计算方法简单和方便,在实际中具有应用价值。
简介:二阶变系数齐次线性方程:d^2y/dx^2+p(x)dy/dx+q(x)y=0,(其中p(x),q(x)εc′)……(1)与相应的黎卡提方程:dy/dx+p(x)y+y^2+q(x)=0……(2)的解之间存在着重要的关系,即定理1和定理2,开辟了方程(1)和(2)关系研究的途径,并作出了九个推论,其中若干个重要的结论与文中结论相同。
简介:在科学研究、工程技术中,常常需要将某些实际问题转化为二阶常微分方程问题,因此研究不同类型的二阶常微分方程的求解方法具有十分重要的意义。介绍二阶常系数线性方程的若干种求解方法,包括多项式法、升阶法、积分法、微分算子法等等。这为我们今后进一步研究常微分方程提供了基础。
简介:摘要本文通过换元法对常系数非齐次线性微分方程进行求解,丰富了常系数非齐次线性微分方程的求解方法,且该方法适用于更多形式的非线性项的微分方程。
简介:本文考察了两个二维环而连通和T~2#T~2上的二阶系统周期解,应用Lustcmik-schorclman理论得到了二阶系统至少有3个几何不同的弱解,进一步若所有弱解都是非退化的,该系统至少有6个几何不同的弱解。
简介:对一类含参数入的二阶变系数线性微分方程,借助变量替换法,复合函数的求导法则及引理,给出这类方程的求解公式,直接应用其公式,求解相应方程,显得十分简便。