简介:针对带有攻击角约束的多导弹同时攻击机动目标问题,提出了一种带有攻击角约束的协同制导律。首先基于平面内的导弹-目标相对运动方程,建立了带有攻击角约束的协同制导模型;其次,把协同制导律的设计过程分离为两个部分:一是基于图论的有关内容,运用有限时间一致性理论设计沿着视线方向上的加速度指令来保证所有导弹与目标的相对距离在有限时间内到达一致,进而保证所有的导弹同时击中机动目标;二是利用非齐次干扰观测器对机动目标的加速度进行估计,并运用滑模控制设计视线法向上的加速度指令来保证每枚导弹与目标间的视线角速率收敛到零和视线角收敛到期望的终端视线角,即每枚导弹以期望的终端视线角成功击中目标;最后,对三枚导弹同时打击同一机动目标的情况进行仿真,仿真结果表明本文设计的带有攻击角约束的协同制导律的有效性和正确性。
简介:本文讨论矩阵方程在子矩阵约束下的Hermitian解的共轭梯度迭代算法,先转化成两个低阶方程,然后利用共轭梯度思想分别构造出低阶方程的共轭梯度迭代算法,运用算法求出矩阵方程的Hermitian解及最佳逼近,最后给出了数值实例来验证算法的有效性.
简介:随机需求库存-路径问题(StochasticDemandInventoryRoutingProblem,SDIRP)是典型的NP难题,也是实施供应商管理库存策略过程中的关键所在。文章通过引入固定分区策略(FixedPartitionPolicy,FPP),将SDIRP分解为若干个独立的子问题,并采用拉格朗日对偶理论以及次梯度算法确定最优的客户分区。在此基础上证明了各子问题的最优周期性策略由分区内各客户的(T,S)库存策略以及相应的最优旅行商路径构成,进而给出了客户需求服从泊松分布时求解最优(T,S)策略各参数的方程组,并设计了求解算法。最后,通过数值算例讨论了上述策略以及算法对于解决SDIRP的有效性。
简介:假设保险盈余服从跳跃扩散过程,保险资金投资标的包括无风险资产和风险资产两部分,其中股票价格过程服从CEV模型.本文研究了一种终值财富期望指数效用最大化的最优化比例再保险投资问题.利用随机控制理论技术,得到比例再保险投资过程的HJB方程,并从理论上推导出了最优投资策略和价值函数的显示表达式.
简介:文章给出了一种真正多维的HLLRiemann解算器.采用AUSM分裂将通量分解成为对流通量和压力通量,其中对流通量的计算采用迎风格式,压力通量的计算采用HLL格式,且将HLL格式的耗散项中的密度差用压力差代替,从而使得格式能够分辨接触间断.为了实现数值格式真正多维的特性,分别计算了网格界面中点和角点上的数值通量,并且采用Simpson公式加权组合中点和角点上的数值通量得到网格界面的数值通量.为了减少重构角点处状态时的模板宽度,计算中采用基于SDWLS梯度的线性重构获得2阶空间精度,而时间离散采用2阶保强稳Runge—Kutta方法.数值实验表明,相比于传统的一维HLL格式,文章的真正多维HLL格式具有能够分辨接触间断,以及更大的时间步长等优点.与其他能够分辨接触间断的格式(例如HLLC格式)不同,真正多维的HLL格式在计算二维问题时不会出现激波不稳定现象.
简介:利用变分原理研究超线性常微分p-Laplace系统周期解的存在性.在带有脉冲和阻尼作用项时,根据易一型山路定理,得到了系统多重周期解的存在性.
简介:针对传统基于g信息的粗对准的捷联惯导系统中,受传感器噪声的影响,存在效视运动无法提取和双向量共线的缺点,提出了一种基于改良Kalman滤波的参数辨识粗对准方法。该方法通过构建视在重力在初始载体系中的映射模型,利用改良Kalman滤波进行模型参数辨识,然后通过识别参数重新构建视在重力在初始载体系中的映射,解决了由于传感器噪声导致有效视运动无法正常提取的缺点。利用识别参数具有随估计次数增多得到优化的特点,构造初始时刻和最终时刻向量,避免双向量共线问题。利用改良Kalman滤波算法的自适应特点,优化参数识别精度与速度。转台实验表明,采用改良Kalman滤波方法航向对准精度为-0.0414°,标准差为0.041°,而传统RLS方法得到的航向精度为-0.0738°,标准差为0.128°。由此可知,本文提出的方法性能更优。
简介:希尔伯特在巴黎国际数学家代表大会上发表演讲《数学问题》,并指出数学问题乃是数学前进的指路明灯.之后,问题解决成了国际教育改革的一个热点问题.问题解决的目的是提高学生解决实际问题的能力,而这种能力的培养是通过一系列创造性的思维活动过程来完成,其中就包括了直观思维.直观思维区别于逻辑思维,是数学教学过程中一种重要的思维方法,它是不经过逐步分析,而迅速对问题的答案作出合理猜测、设想和顿悟的一种跃进性思维,它是外界事物在人脑中的反应.数学问题的解决过程中,直观思维是一种主动的、自觉的或自动化的理解运用数学知识的态度和意识,它可以帮助学生用灵活的方法作出数学判断,针对数学问题的解决提出有效的策略.