学科分类
/ 1
14 个结果
  • 简介:本文应用多重尺度法构造出非线性微分方程组的解的渐近展开式。并用微分不等式的技巧,证明原问题的解的存在性,且给出解的一致有效渐近估计.

  • 标签: 奇摄动 多重尺度法 渐近展开式 微分不等式
  • 简介:讨论一类总数依赖非线性年龄结构种群模型的动力特性,给出了系统的一个等价问题,并讨论了系统的平衡解和非平衡解,得到了平衡解和非平衡解存在的充要条件.

  • 标签: 非线性 年龄结构 种群模型 平衡解
  • 简介:介绍了进化动力学的基本知识和研究现状,把表型特征引入种群动力学模型,进而推导出进化适应动力学模型;总结了如何建立适应度函数以及分析研究进化动力学行为的一般理论和方法,并列举实例,模拟分析验证前面所陈述的理论方法,模拟结果说明收获对生物进化产生重要影响,并有效解释了物种多样性。

  • 标签: 种群模型 适应动力学 进化稳定 进化分支
  • 简介:建立一类不育控制下的害鼠种群的离散模型.首先利用三个Jury条件,得到平衡点的局部渐近稳定性的充分条件.其次利用李雅普诺夫函数和细致分析法分别给出了零平衡点全局稳定及持续生存的充分条件.最后给出了平衡点全局稳定的数值模拟.

  • 标签: 不育控制 全局渐近稳定性 持续生存
  • 简介:考虑非自治具有阶段结构种群扩散和收获的时滞生态模型.运用泛函微分方程的单调流理论和凹算子理论,得到唯一正周期解的存在性和全局渐进稳定性.并得到收获阈值.该结论说明只要收获量不超过其阈值,通过扩散则种群可以保持持续生存,而且稳定在一个周期震荡水平.对合理利用生物资源和保持生物多样性具有理论指导意义.

  • 标签: 阶段结构 单调流理论 凹算子理论 BROUWER不动点定理 稳定性
  • 简介:研究具有反馈控制的单种群对数模型.通过构造适当的Lyapunov函数.我们让得系统的正平衡点是无条件全局稳定的.所得结果补充和完善了已有的结果.

  • 标签: 关反馈控制 对数模型 Lyapunov函数:稳定性
  • 简介:本文借助于马尔可夫骨架过程(舱妒)方法研究了种群动态学中单种群种群数量的瞬时分布,并证明单种群种群数量在时刻t的瞬时分布是某一非负线性方程的最小非负解。

  • 标签: 单种群种群数量 马尔可炙骨架过程 最小非负解
  • 简介:讨论了年龄相关的半线性时变种群系统的最优捕获控制问题.根据微积分方程及泛函分析的知识证明了最优捕获控制的存在性,得到了捕获控制为最优的必要条件.

  • 标签: 半线性种群系统 最优捕获 必要条件
  • 简介:文章应用基本Fisher准则下逐渐二级分辨原理,对山东省临沂市1965~1986年(1980年除外)共21年的第二代玉米螟虫株率的历史观测数据进行了数量分析,建立了3个逐步二级分辨数学模型,经对历史资料的回报验证,其历史符合率分别为95.24%、92.31%、100%。将1987年、1988年观测数据作为独立样本进行试报,其预报结果与实际一致。

  • 标签: 预测 农业害虫 种群动态 逐步二级分辨 数学模型 玉米螟
  • 简介:本文在L^1空间上,研究一类具积分边界条件种群细胞迁移方程,利用泛函分析中构造算子和比较算子方法及相关半群知识证明了迁移算子A_H产生的G_0半群V_H(t)的Dyson-Phillips展开式的n阶余项R_n(t)(n≥1)的弱紧性及V_H(t)和U_H(t)(streaming算子B_H产生)具有相同的本质谱及一致的本质谱型,得到了在区域Г中迁移算子A_H仅由有限个具有限代数重数的离散本征值组成及迁移方程解的渐近稳定性.

  • 标签: 积分边界条件 种群细胞 本质谱 半群
  • 简介:生态环境系统是一个复杂的有待于综合运用生物科学、环境科学、信息科学、数学科学与计算机科学深入研究的信息系统.而其中对生态系统宏观优化调控决策的研究已成为了近年来国内、外数学与生态学工作者深入探讨的一大课题.基于当前生态种群研究须向宏观与微观两极纵深发展、延伸以及数量种群生态学复杂系统建模的需要,本文通过对一类具有竞争机理局部稳定的两种相互作用生态种群模型保解析性及其宏观优化调控的讨论,进一步将生态环境系统的调控严谨化,给一类生态系统的动态分析与调控优化提供了很有价值的方法与手段.这不仅对于两种相互竞争和互惠互存的生态系统的建模与分析具有重要意义,而且对于更为复杂的生态环境系统的动态分析与宏观调控也具有较大的指导作用与应用价值.

  • 标签: 生态种群模型 等倾线方程 密度制约 动态分析 优化与控制
  • 简介:讨论了一类具有概周期系数的三种群第Ⅱ类功能性反应的模型,通过利用微分不等式及构造适当的李雅普诺夫函数获得了其存在全局渐近稳定性的概周期解的充分条件

  • 标签: 概周期解 全局渐近稳定 李雅普诺夫函数