简介:介绍了层析成像技术的图像重建算法,并从正向问题数学模型的简化和反向问题数学模型的映射结构的角度比较了各种算法的特点和优劣。研究表明:用本质是线性算法的各种变换方法重建图像存在严重失真,而卷积滤波的引入可以使变换方法的重建效果有所改善;基于导数搜索的迭代算法对初始值依赖性强、收敛速度慢并且容易陷入局部最优解;基于Fourier变换的方法具有本质的局限性;小波变换则可以同时刻画图像时域和频域的细节特征;有限元法通过重建对象像素的智能划分可以简化正问题的复杂性;而具有物理背景的蒙特卡罗法、模拟退火法、遗传算法、粒子滤波法及神经网络法更适合于复杂且非线性的图像重建;智能化、仿生化、并行化以及各种算法的融合是层析成像图像重建算法的发展趋势。
简介:提出两类联系函数,它们是阿基米德联系函数与Fréchet-Hoeffding界的融合,是正序簇.一类介于Fréchet-Hoeffding下界与一个特殊的联系函数之间;另一类介于Fréchet-Hoeffdingshang上界与一个特殊的联系函数之间.本文最后提出几个有待解决的问题.