简介:介绍了层析成像技术的图像重建算法,并从正向问题数学模型的简化和反向问题数学模型的映射结构的角度比较了各种算法的特点和优劣。研究表明:用本质是线性算法的各种变换方法重建图像存在严重失真,而卷积滤波的引入可以使变换方法的重建效果有所改善;基于导数搜索的迭代算法对初始值依赖性强、收敛速度慢并且容易陷入局部最优解;基于Fourier变换的方法具有本质的局限性;小波变换则可以同时刻画图像时域和频域的细节特征;有限元法通过重建对象像素的智能划分可以简化正问题的复杂性;而具有物理背景的蒙特卡罗法、模拟退火法、遗传算法、粒子滤波法及神经网络法更适合于复杂且非线性的图像重建;智能化、仿生化、并行化以及各种算法的融合是层析成像图像重建算法的发展趋势。
简介:通过计算两个广义的范德蒙(Vandermonde)行列式,得到了第一类无符号Stirling数和第二类Stifling数的一种新的表示方法:用行列式来表示.
简介:通过引入两个函数,讨论了它们的凸性和单调性,由此得到下凸函数的Hadamard不等式的改进,推广了有关文献的结果.又根据GA一下凸函数与下凸函数的关系,得到GA一凸函数的Hadamard不等式的改进与推广.
简介:介绍一些网络聚类算法及其基本原理,简述了其在生物信息学的应用。本文不是网络聚类算法的全面综述,只介绍这些网络聚类算法的基本思路,体会其数学建模的基本思想。
简介:利用临界点理论研究带阻尼项的二阶Hamilton系统周期解的存在性.在具有部分周期位势和线性增长非线性项时,根据广义鞍点定理定理,得到了系统多重周期解存在的充分条件.